Cargando…

Statistics for data science : leverage the power of statistics for data analysis, classification, regression, machine learning, and neural networks /

Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Miller, James D. (Software consultant) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1017754186
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180104s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d TOH  |d STF  |d OCLCF  |d N$T  |d SNM  |d CEF  |d KSU  |d DEBBG  |d TEFOD  |d G3B  |d S9I  |d UAB  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
020 |a 9781788295345  |q (electronic bk.) 
020 |a 178829534X  |q (electronic bk.) 
020 |a 1788290674 
020 |a 9781788290678 
020 |z 9781788290678 
029 1 |a GBVCP  |b 101493981X 
035 |a (OCoLC)1017754186 
037 |a CL0500000922  |b Safari Books Online 
037 |a 8A0E96E4-6AE2-4399-BE71-56ACDE2E5ED3  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA276.4.M55  |b S73 2017eb 
072 7 |a COM  |x 018000  |2 bisacsh 
082 0 4 |a 005.7565  |2 23 
049 |a UAMI 
100 1 |a Miller, James D.  |c (Software consultant),  |e author. 
245 1 0 |a Statistics for data science :  |b leverage the power of statistics for data analysis, classification, regression, machine learning, and neural networks /  |c James D. Miller. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (viewed January 2, 2018). 
520 |a Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortab ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Statistics. 
650 0 |a Big data. 
650 6 |a Données volumineuses. 
650 6 |a Statistique. 
650 7 |a statistics.  |2 aat 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Statistics  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788290678/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1636280 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38039490 
994 |a 92  |b IZTAP