Cargando…

Practical data wrangling : expert techniques for transforming your raw data into a valuable source for analytics /

Turn your noisy data into relevant, insight-ready information by leveraging the data wrangling techniques in Python and R About This Book This easy-to-follow guide takes you through every step of the data wrangling process in the best possible way Work with different types of datasets, and reshape t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Visochek, Allan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1017738649
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180103s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TOH  |d STF  |d OCLCF  |d CEF  |d KSU  |d INT  |d DEBBG  |d OCLCQ  |d G3B  |d S9I  |d UAB  |d RDF  |d VT2  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781787283671 
020 |a 1787283674 
020 |a 1787286134 
020 |a 9781787286139 
020 |z 9781787286139 
029 1 |a GBVCP  |b 1014939585 
035 |a (OCoLC)1017738649 
037 |a CL0500000921  |b Safari Books Online 
050 4 |a QA76.9.D343 
082 0 4 |a 006.312  |2 23 
049 |a UAMI 
100 1 |a Visochek, Allan,  |e author. 
245 1 0 |a Practical data wrangling :  |b expert techniques for transforming your raw data into a valuable source for analytics /  |c Allan Visochek. 
246 3 0 |a Expert techniques for transforming your raw data into a valuable source for analytics 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed December 19, 2017). 
520 |a Turn your noisy data into relevant, insight-ready information by leveraging the data wrangling techniques in Python and R About This Book This easy-to-follow guide takes you through every step of the data wrangling process in the best possible way Work with different types of datasets, and reshape the layout of your data to make it easier for analysis Get simple examples and real-life data wrangling solutions for data pre-processing Who This Book Is For If you are a data scientist, data analyst, or a statistician who wants to learn how to wrangle your data for analysis in the best possible manner, this book is for you. As this book covers both R and Python, some understanding of them will be beneficial. What You Will Learn Read a csv file into python and R, and print out some statistics on the data Gain knowledge of the data formats and programming structures involved in retrieving API data Make effective use of regular expressions in the data wrangling process Explore the tools and packages available to prepare numerical data for analysis Find out how to have better control over manipulating the structure of the data Create a dexterity to programmatically read, audit, correct, and shape data Write and complete programs to take in, format, and output data sets In Detail Around 80% of time in data analysis is spent on cleaning and preparing data for analysis. This is, however, an important task, and is a prerequisite to the rest of the data analysis workflow, including visualization, analysis and reporting. Python and R are considered a popular choice of tool for data analysis, and have packages that can be best used to manipulate different kinds of data, as per your requirements. This book will show you the different data wrangling techniques, and how you can leverage the power of Python and R packages to implement them. You'll start by understanding the data wrangling process and get a solid foundation to work with different types of data. You'll work with different data structures and acquire and parse data from various locations. You'll also see how to reshape the layout of data and manipulate, summarize, and join data sets. Finally, we conclude with a quick primer on accessing and processing data from databases, conducting data exploration, and storing and retrieving data quickly using databases. The book includes practical examples on each of these points using simple and real-world data sets to give you an easier understanding. By the en ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Big data. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 7 |a Big data  |2 fast 
650 7 |a Data mining  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781787286139/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP