Cargando…

Assessing and improving prediction and classification : theory and algorithms in C++ /

Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committee...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Masters, Timothy (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1016156229
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 171221s2018 nyu ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d GW5XE  |d UAB  |d UMI  |d AZU  |d UPM  |d STF  |d OCLCF  |d COO  |d OCLCQ  |d U3W  |d YDX  |d TOH  |d SNK  |d CEF  |d KSU  |d OCLCQ  |d DEBBG  |d K6U  |d D6H  |d AU@  |d WYU  |d G3B  |d OCLCQ  |d LVT  |d S9I  |d C6I  |d UKMGB  |d VT2  |d CAUOI  |d MERER  |d LIV  |d LEAUB  |d OCLCQ  |d UHL  |d LEATE  |d UWW  |d OCLCQ  |d SFB  |d OCLCQ  |d ADU  |d BRF  |d OCLCQ  |d OCLCO  |d AAA  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c Arab 
015 |a GBB8M4604  |2 bnb 
016 7 |a 019140141  |2 Uk 
019 |a 1016926959  |a 1020493769  |a 1021200078  |a 1032281269  |a 1048182328  |a 1048189740  |a 1058423900  |a 1066456462  |a 1081239946  |a 1086533734  |a 1097116691  |a 1113659590  |a 1122847102  |a 1122904451  |a 1125704203  |a 1129343967  |a 1136385013  |a 1144219729  |a 1160085358  |a 1162148866  |a 1162630797 
020 |a 9781484233368  |q (electronic bk.) 
020 |a 1484233360  |q (electronic bk.) 
020 |z 9781484233351 
020 |z 1484233352 
024 7 |a 10.1007/978-1-4842-3336-8  |2 doi 
029 1 |a GBVCP  |b 1014936306 
029 1 |a UKMGB  |b 019140141 
035 |a (OCoLC)1016156229  |z (OCoLC)1016926959  |z (OCoLC)1020493769  |z (OCoLC)1021200078  |z (OCoLC)1032281269  |z (OCoLC)1048182328  |z (OCoLC)1048189740  |z (OCoLC)1058423900  |z (OCoLC)1066456462  |z (OCoLC)1081239946  |z (OCoLC)1086533734  |z (OCoLC)1097116691  |z (OCoLC)1113659590  |z (OCoLC)1122847102  |z (OCoLC)1122904451  |z (OCoLC)1125704203  |z (OCoLC)1129343967  |z (OCoLC)1136385013  |z (OCoLC)1144219729  |z (OCoLC)1160085358  |z (OCoLC)1162148866  |z (OCoLC)1162630797 
037 |a CL0500000933  |b Safari Books Online 
050 4 |a QA76.73.C153 
072 7 |a COM  |x 051070  |2 bisacsh 
072 7 |a UN  |2 bicssc 
072 7 |a UN  |2 thema 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Masters, Timothy,  |e author. 
245 1 0 |a Assessing and improving prediction and classification :  |b theory and algorithms in C++ /  |c Timothy Masters. 
264 1 |a New York, NY :  |b Apress,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
588 0 |a Vendor-supplied metadata. 
504 |a Includes bibliographical references and index. 
520 |a Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. 
505 0 |a 1. Assessment of Numeric Predictions -- 2. Assessment of Class Predictions -- 3. Resampling for Assessing Parameter Estimates -- 4. Resampling for Assessing Prediction and Classification -- 5. Miscellaneous Resampling Techniques -- 6. Combining Numeric Predictions -- 7. Combining Classification Models -- 8. Gaiting Methods -- 9. Information and Entropy -- References. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a C++ (Computer program language) 
650 0 |a Mathematical models. 
650 0 |a Data mining. 
650 2 |a Models, Theoretical 
650 2 |a Data Mining 
650 1 4 |a Computer Science. 
650 2 4 |a Big Data. 
650 2 4 |a Artificial Intelligence (incl. Robotics) 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Statistics, general. 
650 6 |a C++ (Langage de programmation) 
650 6 |a Modèles mathématiques. 
650 6 |a Exploration de données (Informatique) 
650 7 |a mathematical models.  |2 aat 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Maths for computer scientists.  |2 bicssc 
650 7 |a Probability & statistics.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a COMPUTERS  |x Programming Languages  |x C++  |2 bisacsh 
650 7 |a C++ (Computer program language)  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Mathematical models  |2 fast 
776 0 8 |i Printed edition:  |z 9781484233351 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484233368/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
880 |6 520-00/Arab/r  |a Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment.Ʃnally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique.ٯu will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5205531 
938 |a EBSCOhost  |b EBSC  |n 1663909 
938 |a YBP Library Services  |b YANK  |n 15062352 
994 |a 92  |b IZTAP