Cargando…

Neural network programming with TensorFlow : unleash the power of TensorFlow to train efficient neural networks /

Neural Networks and their implementation decoded with TensorFlow About This Book Develop a strong background in neural network programming from scratch, using the popular Tensorflow library. Use Tensorflow to implement different kinds of neural networks ? from simple feedforward neural networks to m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ghotra, Manpreet Singh (Autor), Dua, Rajdeep (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1015687249
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 171218s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d N$T  |d YDX  |d OCLCF  |d TOH  |d STF  |d CEF  |d KSU  |d DEBBG  |d G3B  |d S9I  |d UAB  |d BRX  |d AU@  |d OCLCQ  |d CZL  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781788397759  |q (electronic bk.) 
020 |a 1788397754  |q (electronic bk.) 
020 |a 1788390393 
020 |a 9781788390392 
020 |z 9781788390392 
029 1 |a GBVCP  |b 1014940249 
035 |a (OCoLC)1015687249 
037 |a CL0500000920  |b Safari Books Online 
050 4 |a Q325.5 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
049 |a UAMI 
100 1 |a Ghotra, Manpreet Singh,  |e author. 
245 1 0 |a Neural network programming with TensorFlow :  |b unleash the power of TensorFlow to train efficient neural networks /  |c Manpreet Singh Ghotra, Rajdeep Dua. 
246 3 0 |a Unleash the power of TensorFlow to train efficient neural networks 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed December 11, 2017). 
520 |a Neural Networks and their implementation decoded with TensorFlow About This Book Develop a strong background in neural network programming from scratch, using the popular Tensorflow library. Use Tensorflow to implement different kinds of neural networks ? from simple feedforward neural networks to multilayered perceptrons, CNNs, RNNs and more. A highly practical guide including real-world datasets and use-cases to simplify your understanding of neural networks and their implementation. Who This Book Is For This book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you. What You Will Learn Learn Linear Algebra and mathematics behind neural network. Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks. Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points Learn through real world examples like Sentiment Analysis. Train different types of generative models and explore autoencoders. Explore TensorFlow as an example of deep learning implementation. In Detail If you're aware of the buzz surrounding the terms such as "machine learning," "artificial intelligence," or "deep learning," you might know what neural networks are. Ever wondered how they help in solving complex computational problem efficiently, or how to train efficient neural networks? This book will teach you just that. You will start by getting a quick overview of the popular TensorFlow library and how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice Then, you will proceed to implement a simple feed forward neural network. Next you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn to implement some more complex types of neural networks such as convolutional neural networks, recurrent neural networks, and Deep Belief Networks. In the course of the book, you will be working on real-world datasets to... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Dua, Rajdeep,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788390392/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1630664 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis39252081 
938 |a YBP Library Services  |b YANK  |n 14978468 
994 |a 92  |b IZTAP