Cargando…

Python deep learning cookbook : over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python /

Solve different problems in modelling deep neural networks using Python, Tensorflow, and Keras with this practical guide About This Book Practical recipes on training different neural network models and tuning them for optimal performance Use Python frameworks like TensorFlow, Caffe, Keras, Theano f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bakker, Indra den (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1015687240
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 171218s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d NLE  |d OCLCF  |d TOH  |d N$T  |d CEF  |d KSU  |d OCLCQ  |d DEBBG  |d UKMGB  |d G3B  |d S9I  |d UAB  |d UKAHL  |d K6U  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
015 |a GBB7O8222  |2 bnb 
016 7 |a 018610864  |2 Uk 
020 |a 9781787122253  |q (electronic bk.) 
020 |a 1787122255  |q (electronic bk.) 
020 |a 178712519X 
020 |a 9781787125193 
020 |z 9781787125193 
029 1 |a GBVCP  |b 1014939054 
029 1 |a UKMGB  |b 018610864 
035 |a (OCoLC)1015687240 
037 |a CL0500000920  |b Safari Books Online 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Bakker, Indra den,  |e author. 
245 1 0 |a Python deep learning cookbook :  |b over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python /  |c Indra den Bakker. 
246 3 0 |a Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed December 11, 2017). 
520 |a Solve different problems in modelling deep neural networks using Python, Tensorflow, and Keras with this practical guide About This Book Practical recipes on training different neural network models and tuning them for optimal performance Use Python frameworks like TensorFlow, Caffe, Keras, Theano for Natural Language Processing, Computer Vision, and more A hands-on guide covering the common as well as the not so common problems in deep learning using Python Who This Book Is For This book is intended for machine learning professionals who are looking to use deep learning algorithms to create real-world applications using Python. Thorough understanding of the machine learning concepts and Python libraries such as NumPy, SciPy and scikit-learn is expected. Additionally, basic knowledge in linear algebra and calculus is desired. What You Will Learn Implement different neural network models in Python Select the best Python framework for deep learning such as PyTorch, Tensorflow, MXNet and Keras Apply tips and tricks related to neural networks internals, to boost learning performances Consolidate machine learning principles and apply them in the deep learning field Reuse and adapt Python code snippets to everyday problems Evaluate the cost/benefits and performance implication of each discussed solution In Detail Deep Learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top-down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include Computer Vision, Natural Language Processing, Time Series, and Robotics. The Python Deep Learning Cookbook presents technical solutions to the issues presented, along with a detailed explanation of the solutions. Furthermore, a discussion on corresponding pros and cons of implementing the proposed solution using one of the popular frameworks like TensorFlow, PyTorch, Keras and CNTK is provided. The book includes recipes that are related to the basic concepts of neural networks. All techniques s, as well as classical networks topologies. The main purpose of this book is to provide Python programmers a detailed list of recipes to apply deep learning to common and not-so-common scenarios. Style and approach Unique blend of independent recipes arranged in the most logical manner. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Computer programming. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Programmation (Informatique) 
650 7 |a computer programming.  |2 aat 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Computer programming.  |2 fast  |0 (OCoLC)fst00872390 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781787125193/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0035385718 
938 |a EBSCOhost  |b EBSC  |n 1626955 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis39182170 
994 |a 92  |b IZTAP