|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1015372122 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
171215s2018 caua o 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d TEFOD
|d OCLCF
|d UMI
|d MERER
|d STF
|d CNO
|d IDEBK
|d OCLCQ
|d TOH
|d NRC
|d HCO
|d CEF
|d KSU
|d YDX
|d MNW
|d DEBBG
|d G3B
|d S9I
|d UAB
|d UKAHL
|d VT2
|d OCLCQ
|d OCLCO
|d AAA
|d OCLCQ
|
015 |
|
|
|a GBB7B3690
|2 bnb
|
016 |
7 |
|
|a 018408167
|2 Uk
|
019 |
|
|
|a 1017738621
|a 1047786091
|a 1122596262
|a 1152980872
|a 1192328921
|a 1240520819
|
020 |
|
|
|a 9781491974537
|q (electronic bk.)
|
020 |
|
|
|a 1491974532
|q (electronic bk.)
|
020 |
|
|
|a 9781491974513
|q (electronic bk.)
|
020 |
|
|
|a 1491974516
|q (electronic bk.)
|
020 |
|
|
|z 9781491974568
|
020 |
|
|
|z 1491974567
|
029 |
1 |
|
|a AU@
|b 000066231455
|
029 |
1 |
|
|a GBVCP
|b 1014936551
|
035 |
|
|
|a (OCoLC)1015372122
|z (OCoLC)1017738621
|z (OCoLC)1047786091
|z (OCoLC)1122596262
|z (OCoLC)1152980872
|z (OCoLC)1192328921
|z (OCoLC)1240520819
|
037 |
|
|
|a 66F6568C-292B-4738-BB9D-0BFCB109A75B
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.54
|b .L35 2018eb
|
072 |
|
7 |
|a COM
|x 013000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 018000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 067000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 032000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 037000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 052000
|2 bisacsh
|
082 |
0 |
4 |
|a 004.33
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lakshmanan, Valliappa,
|e author.
|
245 |
1 |
0 |
|a Data science on the Google cloud platform :
|b implementing end-to-end real-time data pipelines: from ingest to machine learning /
|c Valliappa Lakshmanan.
|
250 |
|
|
|a First edition.
|
264 |
|
1 |
|a Sebastopol, CA :
|b O'Reilly Media,
|c 2018.
|
300 |
|
|
|a 1 online resource (xiv, 393 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed December 20, 2017).
|
520 |
|
|
|a Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Over the course of the book, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You'll learn how to: automate and schedule data ingest using an App Engine application, create and populate a dashboard in Google Data Studio, build a real-time analysis pipeline to carry out streaming analytics, conduct interactive data exploration with Google BigQuery, create a Bayesian model on a Cloud Dataproc cluster, build a logistic regression machine learning model with Spark, compute time-aggregate features with a Cloud Dataflow pipeline, create a high-performing prediction model with TensorFlow, use your deployed model as a microservice you can access from both batch and real-time pipelines.
|
505 |
0 |
|
|a Making better decisions based on data -- Ingesting data into the cloud -- Creating compelling dashboards -- Streaming data: publication and ingest -- Interactive data exploration -- Bayes classifier on cloud dataproc -- Machine learning: logistic regression on Spark -- Time-windowed aggregate features -- Machine learning classifier using TensorFlow -- Real-time machine learning.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
610 |
2 |
0 |
|a Google (Firm)
|
610 |
2 |
7 |
|a Google (Firm)
|2 fast
|0 (OCoLC)fst00759798
|
650 |
|
0 |
|a Real-time data processing.
|
650 |
|
0 |
|a Cloud computing.
|
650 |
|
0 |
|a Computing platforms.
|
650 |
|
6 |
|a Temps réel (Informatique)
|
650 |
|
6 |
|a Infonuagique.
|
650 |
|
6 |
|a Plateformes (Informatique)
|
650 |
|
7 |
|a COMPUTERS
|x Computer Literacy.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Computer Science.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Data Processing.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Hardware
|x General.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Information Technology.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Machine Theory.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Cloud computing.
|2 fast
|0 (OCoLC)fst01745899
|
650 |
|
7 |
|a Computing platforms.
|2 fast
|0 (OCoLC)fst01893329
|
650 |
|
7 |
|a Real-time data processing.
|2 fast
|0 (OCoLC)fst01091219
|
776 |
0 |
8 |
|i Print version:
|a Lakshmanan, Valliappa.
|t Data science on the Google cloud platform.
|b First edition.
|d Sebastopol, CA : O'Reilly Media, 2018
|z 1491974567
|z 9781491974568
|w (OCoLC)966394369
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781491974551/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33867960
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33757057
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1655721
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis39717722
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15043843
|
994 |
|
|
|a 92
|b IZTAP
|