Data science on the Google cloud platform : implementing end-to-end real-time data pipelines: from ingest to machine learning /
Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical a...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Sebastopol, CA :
O'Reilly Media,
2018.
|
Edición: | First edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Sumario: | Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Over the course of the book, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You'll learn how to: automate and schedule data ingest using an App Engine application, create and populate a dashboard in Google Data Studio, build a real-time analysis pipeline to carry out streaming analytics, conduct interactive data exploration with Google BigQuery, create a Bayesian model on a Cloud Dataproc cluster, build a logistic regression machine learning model with Spark, compute time-aggregate features with a Cloud Dataflow pipeline, create a high-performing prediction model with TensorFlow, use your deployed model as a microservice you can access from both batch and real-time pipelines. |
---|---|
Notas: | Includes index. |
Descripción Física: | 1 online resource (xiv, 393 pages) : illustrations |
ISBN: | 9781491974537 1491974532 9781491974513 1491974516 |