Cargando…

PySpark recipes : a problem-solution approach with PySpark2 /

Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark R...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mishra, Raju Kumar (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [United States] : Apress, [2018]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1015239900
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 171212s2018 xxua o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d N$T  |d YDX  |d OCLCF  |d UAB  |d UMI  |d AZU  |d UPM  |d STF  |d COO  |d OCLCQ  |d AUD  |d U3W  |d TOH  |d SNK  |d CEF  |d K6U  |d OCLCQ  |d KSU  |d VT2  |d DEBBG  |d CNCEN  |d D6H  |d AU@  |d WYU  |d G3B  |d OCLCQ  |d LVT  |d S9I  |d C6I  |d UKMGB  |d CAUOI  |d LIV  |d MERER  |d LEAUB  |d OCLCQ  |d ESU  |d OCLCQ  |d ADU  |d UHL  |d LEATE  |d UWW  |d SFB  |d SRU  |d BRF  |d AJS  |d DCT  |d HS0  |d EYM  |d NLW  |d S2H  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d LUU  |d OCLCQ  |d OCLCO 
066 |c Hani  |c Thai  |c $1  |c Armn 
015 |a GBB8O3789  |2 bnb 
016 7 |a 019183814  |2 Uk 
019 |a 1015831754  |a 1019902054  |a 1021187864  |a 1032270281  |a 1043793996  |a 1048099929  |a 1058612549  |a 1066472765  |a 1066603210  |a 1081215083  |a 1086560138  |a 1097094493  |a 1113407880  |a 1113481346  |a 1122848022  |a 1122902655  |a 1125665663  |a 1129356629  |a 1136401466  |a 1144316909  |a 1152972892  |a 1153897032  |a 1156101677  |a 1160091121  |a 1162238435  |a 1162710196  |a 1192349431  |a 1203988489  |a 1227640881  |a 1240512008 
020 |a 9781484231418  |q (electronic bk.) 
020 |a 1484231414  |q (electronic bk.) 
020 |z 9781484231401  |q (print) 
020 |z 1484231406 
024 7 |a 10.1007/978-1-4842-3141-8  |2 doi 
029 1 |a AU@  |b 000061389527 
029 1 |a GBVCP  |b 1014936136 
029 1 |a UKMGB  |b 019183814 
029 1 |a AU@  |b 000068984893 
035 |a (OCoLC)1015239900  |z (OCoLC)1015831754  |z (OCoLC)1019902054  |z (OCoLC)1021187864  |z (OCoLC)1032270281  |z (OCoLC)1043793996  |z (OCoLC)1048099929  |z (OCoLC)1058612549  |z (OCoLC)1066472765  |z (OCoLC)1066603210  |z (OCoLC)1081215083  |z (OCoLC)1086560138  |z (OCoLC)1097094493  |z (OCoLC)1113407880  |z (OCoLC)1113481346  |z (OCoLC)1122848022  |z (OCoLC)1122902655  |z (OCoLC)1125665663  |z (OCoLC)1129356629  |z (OCoLC)1136401466  |z (OCoLC)1144316909  |z (OCoLC)1152972892  |z (OCoLC)1153897032  |z (OCoLC)1156101677  |z (OCoLC)1160091121  |z (OCoLC)1162238435  |z (OCoLC)1162710196  |z (OCoLC)1192349431  |z (OCoLC)1203988489  |z (OCoLC)1227640881  |z (OCoLC)1240512008 
037 |a CL0500000931  |b Safari Books Online 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051010  |2 bisacsh 
072 7 |a UN  |2 bicssc 
072 7 |a UN  |2 thema 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Mishra, Raju Kumar,  |e author. 
245 1 0 |a PySpark recipes :  |b a problem-solution approach with PySpark2 /  |c Raju Kumar Mishra. 
264 1 |a [United States] :  |b Apress,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed December 20, 2017). 
505 0 |a Chapter 1: The Era of Big Data, Hadoop, and Other Big Data Processing Frameworks -- Chapter 2: Installation -- Chapter 3: Introduction to Python and NumPy -- Chapter 4: Spark Architecture and Resilient Distributed Dataset -- Chapter 5: The Power of Pairs: Paired RDD -- Chapter 6: IO in PySpark -- Chapter 7: Optimizing PySpark and PySpark Streaming -- Chapter 8: PySparkSQL -- Chapter 9: PySpark MLlib and Linear Regression. 
520 |6 880-01  |a Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model. What You Will Learn: Understand the advanced features of PySpark and SparkSQL Optimize your code Program SparkSQL with Python Use Spark Streaming and Spark MLlib with Python Perform graph analysis with GraphFrames. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a SPARK (Computer program language) 
650 1 4 |a Computer Science. 
650 2 4 |a Big Data. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 6 |a Python (Langage de programmation) 
650 7 |a Computer programming  |x software development.  |2 bicssc 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Data mining.  |2 bicssc 
650 7 |a Databases.  |2 bicssc 
650 7 |a COMPUTERS  |x Programming Languages  |x General.  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a SPARK (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Mishra, Raju Kumar.  |t PySpark recipes.  |d [United States] : Apress, [2018]  |z 1484231406  |z 9781484231401  |w (OCoLC)1004042658 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484231418/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
880 0 |6 505-00/Thai  |a Chapter 1: The Era of Big Data, Hadoop, and Other Big Data Processing Frameworks -- Chapter 2: Installation -- Chapter 3: Introduction to Python and NumPy -- Chapter 4: Spark Architecture and Resilient Distributed Dataset -- Chapter 5: The Power of Pairs: Paired RDD -- Chapter 6: IO in PySpark -- Chapter 7: Optimizing PySpark and PySpark Streaming -- Chapter 8: PySparkSQL -- Chapter 9: ๓park MLlib and Linear Regression. 
880 |6 520-01/$1  |a Quickly find solutions to common programming problems宣ountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark Recipes㯶ers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model. What You Will Learn: ծderstand the advanced features of PySpark and SparkSQL Optimize your code Program SparkSQL with Python Use Spark Streaming and Spark MLlib with Python Perform graph analysis with GraphFrames. 
938 |a EBSCOhost  |b EBSC  |n 1652042 
938 |a YBP Library Services  |b YANK  |n 15042008 
994 |a 92  |b IZTAP