Avoiding the pitfalls of deep learning : solving model overfitting with regularization and dropout /
"Understanding how to create a deep learning neural network is an essential component of any data scientist's knowledge base. This course covers some of the challenges that arise when training neural networks. It focuses on the problem of overfitting and its potential remedy: regularizatio...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
O'Reilly Media,
[2017]
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Applied deep learning : a case-based approach to understanding neural networks /
por: Michelucci, Umberto
Publicado: (2018) -
Deep learning : principios y fundamentos /
por: Bosch Rué, Anna, et al.
Publicado: (2020) -
Probabilistic deep learning : with Python, Keras, and TensorFlow Probability /
por: Dürr, Oliver (College teacher), et al.
Publicado: (2020) -
Introduction to deep learning : concepts and fundamentals /
Publicado: (2017) -
Deep learning with Python /
por: Chollet, François
Publicado: (2021)