Cargando…

Machine learning with R cookbook : analyze data and build predictive models /

Explore over 110 recipes to analyze data and build predictive models with simple and easy-to-use R code About This Book Apply R to simplify predictive modeling with short and simple code Use machine learning to solve problems ranging from small to big data Build a training and testing dataset, apply...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bhatia, AshishSingh (Autor), Chiu, Yu-Wei (David Chiu) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1011524936
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 171114s2017 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d STF  |d OCLCF  |d TOH  |d CEF  |d KSU  |d DEBBG  |d WYU  |d UAB  |d VLY  |d OCLCO  |d UKMGB  |d OCLCQ  |d CZL  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBC1L4761  |2 bnb 
016 7 |a 018610862  |2 Uk 
020 |a 9781787287808 
020 |a 1787287807 
020 |z 9781787284395 
029 1 |a GBVCP  |b 1014939461 
029 1 |a UKMGB  |b 018610862 
035 |a (OCoLC)1011524936 
037 |a CL0500000913  |b Safari Books Online 
050 4 |a QA276.45.R3 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Bhatia, AshishSingh,  |e author. 
245 1 0 |a Machine learning with R cookbook :  |b analyze data and build predictive models /  |c AshishSingh Bhatia, Yu-Wei, Chiu (David Chiu). 
246 3 0 |a Analyze data and build predictive models 
250 |a Second edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (viewed November 13, 2017). 
500 |a Includes index. 
520 |a Explore over 110 recipes to analyze data and build predictive models with simple and easy-to-use R code About This Book Apply R to simplify predictive modeling with short and simple code Use machine learning to solve problems ranging from small to big data Build a training and testing dataset, applying different classification methods. Who This Book Is For This book is for data science professionals, data analysts, or people who have used R for data analysis and machine learning who now wish to become the go-to person for machine learning with R. Those who wish to improve the efficiency of their machine learning models and need to work with different kinds of data set will find this book very insightful. What You Will Learn Create and inspect transaction datasets and perform association analysis with the Apriori algorithm Visualize patterns and associations using a range of graphs and find frequent item-sets using the Eclat algorithm Compare differences between each regression method to discover how they solve problems Detect and impute missing values in air quality data Predict possible churn users with the classification approach Plot the autocorrelation function with time series analysis Use the Cox proportional hazards model for survival analysis Implement the clustering method to segment customer data Compress images with the dimension reduction method Incorporate R and Hadoop to solve machine learning problems on big data In Detail Big data has become a popular buzzword across many industries. An increasing number of people have been exposed to the term and are looking at how to leverage big data in their own businesses, to improve sales and profitability. However, collecting, aggregating, and visualizing data is just one part of the equation. Being able to extract useful information from data is another task, and a much more challenging one. Machine Learning with R Cookbook, Second Edition uses a practical approach to teach you how to perform machine learning with R. Each chapter is divided into several simple recipes. Through the step-by-step instructions provided in each recipe, you will be able to construct a predictive model by using a variety of machine learning packages. In this book, you will first learn to set up the R environment and use simple R commands to explore data. The next topic covers how to perform statistical analysis with machine learning analysis and assess created models, covered in detail later on in the book. Yo... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R (Computer program language) 
650 0 |a Mathematical statistics  |x Data processing. 
650 6 |a R (Langage de programmation) 
650 6 |a Statistique mathématique  |x Informatique. 
650 7 |a COMPUTERS.  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS.  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a COMPUTERS.  |x Neural Networks.  |2 bisacsh 
650 7 |a Mathematical statistics  |x Data processing  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
700 1 |a Chiu, Yu-Wei  |q (David Chiu),  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781787284395/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP