Cargando…

Machine learning : end-to-end guide for Java developers : data analysis, machine learning and neural networks simplified /

Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address predictive modeling problems using the most popular machine learnin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Reese, Richard M. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1010935457
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 171108s2017 enka ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d TOH  |d COO  |d OCLCF  |d UOK  |d CEF  |d KSU  |d WYU  |d C6I  |d UAB  |d N$T  |d VLY  |d OCLCQ  |d CZL  |d OCLCO  |d OCLCQ 
019 |a 1162040504 
020 |a 178862940X 
020 |a 9781788629409  |q (electronic bk.) 
020 |z 9781788622219 
029 1 |a GBVCP  |b 1014940834 
035 |a (OCoLC)1010935457  |z (OCoLC)1162040504 
037 |a CL0500000911  |b Safari Books Online 
050 4 |a QA76.73.J38 
082 1 4 |a [E] 
049 |a UAMI 
100 1 |a Reese, Richard M.,  |e author. 
245 1 0 |a Machine learning :  |b end-to-end guide for Java developers : data analysis, machine learning and neural networks simplified /  |c Richard M. Reese [and four others]. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from cover (Safari, viewed November 6, 2017). 
500 |a "Learning path." 
504 |a Includes bibliographical references and index. 
520 |a Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address predictive modeling problems using the most popular machine learning Java libraries A comprehensive course covering a wide spectrum of topics such as machine learning and natural language through practical use-cases Who This Book Is For This course is the right resource for anyone with some knowledge of Java programming who wants to get started with Data Science and Machine learning as quickly as possible. If you want to gain meaningful insights from big data and develop intelligent applications using Java, this course is also a must-have. What You Will Learn Understand key data analysis techniques centered around machine learning Implement Java APIs and various techniques such as classification, clustering, anomaly detection, and more Master key Java machine learning libraries, their functionality, and various kinds of problems that can be addressed using each of them Apply machine learning to real-world data for fraud detection, recommendation engines, text classification, and human activity recognition Experiment with semi-supervised learning and stream-based data mining, building high-performing and real-time predictive models Develop intelligent systems centered around various domains such as security, Internet of Things, social networking, and more In Detail Machine Learning is one of the core area of Artificial Intelligence where computers are trained to self-learn, grow, change, and develop on their own without being explicitly programmed. In this course, we cover how Java is employed to build powerful machine learning models to address the problems being faced in the world of Data Science. The course demonstrates complex data extraction and statistical analysis techniques supported by Java, applying various machine learning methods, exploring machine learning sub-domains, and exploring real-world use cases such as recommendation systems, fraud detection, natural language processing, and more, using Java programming. The course begins with an introduction to data science and basic data science tasks such as data collection, data cleaning, data analysis, and data visualization. The next section has a detailed overview of statistical techniques, covering machine learning, neural networks, and deep learning. T... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Java (Computer program language) 
650 0 |a Machine learning  |x Development. 
650 0 |a Application software  |x Development. 
650 6 |a Java (Langage de programmation) 
650 6 |a Apprentissage automatique  |x Développement. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a Application software  |x Development.  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Java (Computer program language)  |2 fast  |0 (OCoLC)fst00982065 
776 0 |z 1788622219 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788622219/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1611903 
994 |a 92  |b IZTAP