Cargando…

Apache Spark 2.x machine learning cookbook : over 100 recipes to simplify machine learning model implementations with Spark /

Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Wh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Amirghodsi, Siamak (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1006894433
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 171020s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d OCLCF  |d STF  |d VT2  |d N$T  |d UOK  |d CEF  |d KSU  |d UKMGB  |d WYU  |d C6I  |d UAB  |d K6U  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB7K2288  |2 bnb 
016 7 |a 018554425  |2 Uk 
020 |a 9781782174608  |q (electronic bk.) 
020 |a 1782174605  |q (electronic bk.) 
020 |z 9781783551606 
029 1 |a GBVCP  |b 1014938376 
029 1 |a UKMGB  |b 018554425 
035 |a (OCoLC)1006894433 
037 |a CL0500000904  |b Safari Books Online 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Amirghodsi, Siamak,  |e author. 
245 1 0 |a Apache Spark 2.x machine learning cookbook :  |b over 100 recipes to simplify machine learning model implementations with Spark /  |c Siamak Amirghodsi [and three others]. 
246 3 |a Apache Spark two point x machine learning cookbook 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed October 18, 2017). 
520 |a Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intu ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 0 |a Information retrieval. 
650 2 |a Information Storage and Retrieval 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Données volumineuses. 
650 6 |a Recherche de l'information. 
650 7 |a information retrieval.  |2 aat 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Information retrieval  |2 fast 
650 7 |a Machine learning  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781783551606/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1606542 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34562694 
994 |a 92  |b IZTAP