Cargando…

Python for data analysis : data wrangling with Pandas, NumPy, and IPython /

This second edition offers instructions for manipulating, processing, cleaning, and crunching datasets in Python.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McKinney, Wes (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2017.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1005138881
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 171003t20172018cau o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d EBLCP  |d STF  |d MERER  |d OCLCQ  |d OCLCF  |d COO  |d UOK  |d CEF  |d KSU  |d VT2  |d OCLCQ  |d WYU  |d C6I  |d UAB  |d RDF  |d OCLCQ  |d VFL  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |z 9781491957660 
020 |z 9781491957653 
029 1 |a AU@  |b 000061341364 
029 1 |a GBVCP  |b 1014936462 
035 |a (OCoLC)1005138881 
037 |a CL0500000897  |b Safari Books Online 
050 4 |a QA76.73.P98 
082 0 4 |a 005.13/3 
049 |a UAMI 
100 1 |a McKinney, Wes,  |e author. 
245 1 0 |a Python for data analysis :  |b data wrangling with Pandas, NumPy, and IPython /  |c Wes McKinney. 
246 3 0 |a Data wrangling with Pandas, NumPy, and IPython 
250 |a Second edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2017. 
264 4 |c ©2018 
300 |a 1 online resource (1 volume) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed Seprember 29, 2017). 
500 |a Includes index. 
505 0 |a Preliminaries -- Python language basics, IPython, and Jupyter notebook -- Built-in data structures, functions, and files -- NumPy basics : arrays and vectorized computation -- Getting started with pandas -- Data loading, storage, and file formats -- Data cleaning and preparation -- Data wrangling : join, combine, and reshape -- Plotting and visualization -- Data aggregation and group operations -- Time series -- Advanced pandas -- Introduction to modeling libraries in Python -- Data analysis examples -- Advanced NumPy -- More on the IPython system. 
505 0 |a Copyright; Table of Contents; Preface; Section 1. New for the Second Edition; Section 2. Conventions Used in This Book; Section 3. Using Code Examples; Section 4. O'Reilly Safari; Section 5. How to Contact Us; Section 6. Acknowledgments; In Memoriam: John D. Hunter (1968-2012); Acknowledgments for the Second Edition (2017); Acknowledgments for the First Edition (2012); Chapter 1. Preliminaries; 1.1 What Is This Book About?; What Kinds of Data?; 1.2 Why Python for Data Analysis?; Python as Glue; Solving the "Two-Language" Problem; Why Not Python?; 1.3 Essential Python Libraries; NumPy; pandas. 
505 8 |a MatplotlibIPython and Jupyter; SciPy; scikit-learn; statsmodels; 1.4 Installation and Setup; Windows; Apple (OS X, macOS); GNU/Linux; Installing or Updating Python Packages; Python 2 and Python 3; Integrated Development Environments (IDEs) and Text Editors; 1.5 Community and Conferences; 1.6 Navigating This Book; Code Examples; Data for Examples; Import Conventions; Jargon; Chapter 2. Python Language Basics, IPython, and Jupyter Notebooks; 2.1 The Python Interpreter; 2.2 IPython Basics; Running the IPython Shell; Running the Jupyter Notebook; Tab Completion; Introspection. 
505 8 |a The %run CommandExecuting Code from the Clipboard; Terminal Keyboard Shortcuts; About Magic Commands; Matplotlib Integration; 2.3 Python Language Basics; Language Semantics; Scalar Types; Control Flow; Chapter 3. Built-in Data Structures, Functions, and Files; 3.1 Data Structures and Sequences; Tuple; List; Built-in Sequence Functions; dict; set; List, Set, and Dict Comprehensions; 3.2 Functions; Namespaces, Scope, and Local Functions; Returning Multiple Values; Functions Are Objects; Anonymous (Lambda) Functions; Currying: Partial Argument Application; Generators. 
505 8 |a Errors and Exception Handling3.3 Files and the Operating System; Bytes and Unicode with Files; 3.4 Conclusion; Chapter 4. NumPy Basics: Arrays and Vectorized Computation; 4.1 The NumPy ndarray: A Multidimensional Array Object; Creating ndarrays; Data Types for ndarrays; Arithmetic with NumPy Arrays; Basic Indexing and Slicing; Boolean Indexing; Fancy Indexing; Transposing Arrays and Swapping Axes; 4.2 Universal Functions: Fast Element-Wise Array Functions; 4.3 Array-Oriented Programming with Arrays; Expressing Conditional Logic as Array Operations; Mathematical and Statistical Methods. 
505 8 |a Methods for Boolean ArraysSorting; Unique and Other Set Logic; 4.4 File Input and Output with Arrays; 4.5 Linear Algebra; 4.6 Pseudorandom Number Generation; 4.7 Example: Random Walks; Simulating Many Random Walks at Once; 4.8 Conclusion; Chapter 5. Getting Started with pandas; 5.1 Introduction to pandas Data Structures; Series; DataFrame; Index Objects; 5.2 Essential Functionality; Reindexing; Dropping Entries from an Axis; Indexing, Selection, and Filtering; Integer Indexes; Arithmetic and Data Alignment; Function Application and Mapping; Sorting and Ranking. 
520 |a This second edition offers instructions for manipulating, processing, cleaning, and crunching datasets in Python. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a Datamining.  |2 humord 
650 7 |a Programvare.  |2 humord 
650 7 |a Python.  |2 humord 
776 0 8 |i Print version:  |a McKinney, Wes.  |t Python for data analysis : data wrangling with pandas, NumPy, and IPython.  |b Second edition.  |d Sebastopol, California : O'Reilly Media, 2017, ©2018  |z 9781491957660 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491957653/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP