|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1005138881 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
171003t20172018cau o 001 0 eng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d EBLCP
|d STF
|d MERER
|d OCLCQ
|d OCLCF
|d COO
|d UOK
|d CEF
|d KSU
|d VT2
|d OCLCQ
|d WYU
|d C6I
|d UAB
|d RDF
|d OCLCQ
|d VFL
|d OCLCQ
|d OCLCO
|d OCLCQ
|
020 |
|
|
|z 9781491957660
|
020 |
|
|
|z 9781491957653
|
029 |
1 |
|
|a AU@
|b 000061341364
|
029 |
1 |
|
|a GBVCP
|b 1014936462
|
035 |
|
|
|a (OCoLC)1005138881
|
037 |
|
|
|a CL0500000897
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.P98
|
082 |
0 |
4 |
|a 005.13/3
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a McKinney, Wes,
|e author.
|
245 |
1 |
0 |
|a Python for data analysis :
|b data wrangling with Pandas, NumPy, and IPython /
|c Wes McKinney.
|
246 |
3 |
0 |
|a Data wrangling with Pandas, NumPy, and IPython
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a Sebastopol, CA :
|b O'Reilly Media,
|c 2017.
|
264 |
|
4 |
|c ©2018
|
300 |
|
|
|a 1 online resource (1 volume)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from title page (Safari, viewed Seprember 29, 2017).
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Preliminaries -- Python language basics, IPython, and Jupyter notebook -- Built-in data structures, functions, and files -- NumPy basics : arrays and vectorized computation -- Getting started with pandas -- Data loading, storage, and file formats -- Data cleaning and preparation -- Data wrangling : join, combine, and reshape -- Plotting and visualization -- Data aggregation and group operations -- Time series -- Advanced pandas -- Introduction to modeling libraries in Python -- Data analysis examples -- Advanced NumPy -- More on the IPython system.
|
505 |
0 |
|
|a Copyright; Table of Contents; Preface; Section 1. New for the Second Edition; Section 2. Conventions Used in This Book; Section 3. Using Code Examples; Section 4. O'Reilly Safari; Section 5. How to Contact Us; Section 6. Acknowledgments; In Memoriam: John D. Hunter (1968-2012); Acknowledgments for the Second Edition (2017); Acknowledgments for the First Edition (2012); Chapter 1. Preliminaries; 1.1 What Is This Book About?; What Kinds of Data?; 1.2 Why Python for Data Analysis?; Python as Glue; Solving the "Two-Language" Problem; Why Not Python?; 1.3 Essential Python Libraries; NumPy; pandas.
|
505 |
8 |
|
|a MatplotlibIPython and Jupyter; SciPy; scikit-learn; statsmodels; 1.4 Installation and Setup; Windows; Apple (OS X, macOS); GNU/Linux; Installing or Updating Python Packages; Python 2 and Python 3; Integrated Development Environments (IDEs) and Text Editors; 1.5 Community and Conferences; 1.6 Navigating This Book; Code Examples; Data for Examples; Import Conventions; Jargon; Chapter 2. Python Language Basics, IPython, and Jupyter Notebooks; 2.1 The Python Interpreter; 2.2 IPython Basics; Running the IPython Shell; Running the Jupyter Notebook; Tab Completion; Introspection.
|
505 |
8 |
|
|a The %run CommandExecuting Code from the Clipboard; Terminal Keyboard Shortcuts; About Magic Commands; Matplotlib Integration; 2.3 Python Language Basics; Language Semantics; Scalar Types; Control Flow; Chapter 3. Built-in Data Structures, Functions, and Files; 3.1 Data Structures and Sequences; Tuple; List; Built-in Sequence Functions; dict; set; List, Set, and Dict Comprehensions; 3.2 Functions; Namespaces, Scope, and Local Functions; Returning Multiple Values; Functions Are Objects; Anonymous (Lambda) Functions; Currying: Partial Argument Application; Generators.
|
505 |
8 |
|
|a Errors and Exception Handling3.3 Files and the Operating System; Bytes and Unicode with Files; 3.4 Conclusion; Chapter 4. NumPy Basics: Arrays and Vectorized Computation; 4.1 The NumPy ndarray: A Multidimensional Array Object; Creating ndarrays; Data Types for ndarrays; Arithmetic with NumPy Arrays; Basic Indexing and Slicing; Boolean Indexing; Fancy Indexing; Transposing Arrays and Swapping Axes; 4.2 Universal Functions: Fast Element-Wise Array Functions; 4.3 Array-Oriented Programming with Arrays; Expressing Conditional Logic as Array Operations; Mathematical and Statistical Methods.
|
505 |
8 |
|
|a Methods for Boolean ArraysSorting; Unique and Other Set Logic; 4.4 File Input and Output with Arrays; 4.5 Linear Algebra; 4.6 Pseudorandom Number Generation; 4.7 Example: Random Walks; Simulating Many Random Walks at Once; 4.8 Conclusion; Chapter 5. Getting Started with pandas; 5.1 Introduction to pandas Data Structures; Series; DataFrame; Index Objects; 5.2 Essential Functionality; Reindexing; Dropping Entries from an Axis; Indexing, Selection, and Filtering; Integer Indexes; Arithmetic and Data Alignment; Function Application and Mapping; Sorting and Ranking.
|
520 |
|
|
|a This second edition offers instructions for manipulating, processing, cleaning, and crunching datasets in Python.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Data mining.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Data mining.
|2 fast
|0 (OCoLC)fst00887946
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
650 |
|
7 |
|a Datamining.
|2 humord
|
650 |
|
7 |
|a Programvare.
|2 humord
|
650 |
|
7 |
|a Python.
|2 humord
|
776 |
0 |
8 |
|i Print version:
|a McKinney, Wes.
|t Python for data analysis : data wrangling with pandas, NumPy, and IPython.
|b Second edition.
|d Sebastopol, California : O'Reilly Media, 2017, ©2018
|z 9781491957660
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781491957653/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|