Cargando…

Recommendation systems. Part 6, Introduction to real-world machine learning /

"Recommendation systems are a class of machine learning models with many applications. The idea behind recommendation systems is simple: filtering information to suggest items (anything from clothes to films) to users with the predicted probability that the users will enjoy such items. This cou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Staglianò, Alessandra (Orador), Ma, Angie (Orador), Willis, Gary (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1004966454
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 170929s2017 xx 039 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d UAB  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1004966454 
037 |a CL0500000895  |b Safari Books Online 
050 4 |a QA76.87 
049 |a UAMI 
100 1 |a Staglianò, Alessandra,  |e speaker. 
245 1 0 |a Recommendation systems.  |n Part 6,  |p Introduction to real-world machine learning /  |c with Alessandra Staglianò, Angie Ma, and Gary Willis. 
246 3 0 |a Introduction to real-world machine learning 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2017] 
300 |a 1 online resource (1 streaming video file (38 min., 33 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenters, Alessandra Staglianò, Angie Ma, and Gary Willis. 
500 |a Title from title screen (viewed September 28, 2017). 
500 |a Date of publication taken from resource description page. 
500 |a "Part 6 of 6." 
520 |a "Recommendation systems are a class of machine learning models with many applications. The idea behind recommendation systems is simple: filtering information to suggest items (anything from clothes to films) to users with the predicted probability that the users will enjoy such items. This course provides an introduction to recommendation systems. It starts by looking at the applications for these systems with a focus on the big companies whose fortune is built upon them. It then goes through a discussion of the different types of recommendation systems and how to implement them. You'll explore non-personalized systems, association rule learning, collaborative filtering, personalized systems, and the methods used to assess the quality (i.e., how good are the recommendations?) of a recommendation system. Learners should understand basic logic, supervised learning, and statistics."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Ma, Angie,  |e speaker. 
700 1 |a Willis, Gary,  |e speaker. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781492023999/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP