Cargando…

Supervised classification algorithms. Part 3, Introduction to real-world machine learning /

"Classification is the sub-field of machine learning encountered more frequently than any other in data science applications. There are many different classification techniques and this course explains some of the most important ones, including algorithms such as logistic regression, k-nearest...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Staglianò, Alessandra (Orador), Ma, Angie (Orador), Willis, Gary (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1004747377
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 170926s2017 xx 118 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TOH  |d OCLCF  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1004747377 
037 |a CL0500000893  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Staglianò, Alessandra,  |e speaker. 
245 1 0 |a Supervised classification algorithms.  |n Part 3,  |p Introduction to real-world machine learning /  |c with Alessandra Staglianò, Angie Ma, and Gary Willis. 
246 3 0 |a Introduction to real-world machine learning 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2017] 
300 |a 1 online resource (1 streaming video file (1 hr., 57 min., 35 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Alessandra Staglianò, Angie Ma, and Gary Willis. 
500 |a Title from title screen (viewed September 21, 2017). 
500 |a Date of publication taken from resource description page. 
500 |a "Part 3 of 6." 
520 |a "Classification is the sub-field of machine learning encountered more frequently than any other in data science applications. There are many different classification techniques and this course explains some of the most important ones, including algorithms such as logistic regression, k-nearest neighbors (k-NN), decision trees, ensemble models like random forests, and support vector machines. The course also covers Naive Bayes classifiers and in so doing, covers Bayes' theorem and basic Bayesian inference, both of which are widely used in training many machine learning algorithms. A basic knowledge of algebra is required. A solid understanding of differential calculus will be necessary for logistic regression, Support Vector Machines and Bayesian Inference."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Regression analysis. 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 6 |a Analyse de régression. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Regression analysis.  |2 fast  |0 (OCoLC)fst01432090 
700 1 |a Ma, Angie,  |e speaker. 
700 1 |a Willis, Gary,  |e speaker. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781492023937/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP