Cargando…

Mastering machine learning with Spark 2.x : create scalable machine learning applications to power a modern data-driven business using Spark /

Unlock the complexities of machine learning algorithms in Spark to generate useful data insights through this data analysis tutorial About This Book Process and analyze big data in a distributed and scalable way Write sophisticated Spark pipelines that incorporate elaborate extraction Build and use...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tellez, Alex (Autor), Pumperla, Max (Autor), Malohlava, Michal (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1004746825
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 170926s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TOH  |d STF  |d IDEBK  |d OCLCF  |d COO  |d UOK  |d CEF  |d KSU  |d AU@  |d UKMGB  |d WYU  |d C6I  |d UAB  |d UKAHL  |d N$T  |d OCLCQ  |d DST  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB7K1700  |2 bnb 
016 7 |a 018516470  |2 Uk 
020 |a 1785282417 
020 |a 9781785282416  |q (electronic bk.) 
020 |z 9781785283451 
029 1 |a GBVCP  |b 1014938481 
029 1 |a UKMGB  |b 018516470 
035 |a (OCoLC)1004746825 
037 |a CL0500000894  |b Safari Books Online 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Tellez, Alex,  |e author. 
245 1 0 |a Mastering machine learning with Spark 2.x :  |b create scalable machine learning applications to power a modern data-driven business using Spark /  |c Alex Tellez, Max Pumperla, Michal Malohlava. 
246 3 0 |a Create scalable machine learning applications to power a modern data-driven business using Spark 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed September 26, 2017). 
520 |a Unlock the complexities of machine learning algorithms in Spark to generate useful data insights through this data analysis tutorial About This Book Process and analyze big data in a distributed and scalable way Write sophisticated Spark pipelines that incorporate elaborate extraction Build and use regression models to predict flight delays Who This Book Is For Are you a developer with a background in machine learning and statistics who is feeling limited by the current slow and ?small data? machine learning tools? Then this is the book for you! In this book, you will create scalable machine learning applications to power a modern data-driven business using Spark. We assume that you already know the machine learning concepts and algorithms and have Spark up and running (whether on a cluster or locally) and have a basic knowledge of the various libraries contained in Spark. What You Will Learn Use Spark streams to cluster tweets online Run the PageRank algorithm to compute user influence Perform complex manipulation of DataFrames using Spark Define Spark pipelines to compose individual data transformations Utilize generated models for off-line/on-line prediction Transfer the learning from an ensemble to a simpler Neural Network Understand basic graph properties and important graph operations Use GraphFrames, an extension of DataFrames to graphs, to study graphs using an elegant query language Use K-means algorithm to cluster movie reviews dataset In Detail The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Databases  |x Data Mining.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Visualization.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
700 1 |a Pumperla, Max,  |e author. 
700 1 |a Malohlava, Michal,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781785283451/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31403905 
938 |a EBSCOhost  |b EBSC  |n 1587474 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis35450241 
994 |a 92  |b IZTAP