Introduction to deep learning using R : a step-by-step guide to learning and implementing deep learning models using R /
Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Lea...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Berkeley, California?] :
Apress,
[2017]
|
Colección: | Books for professionals by professionals.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Introduction to deep learning
- Mathematical review
- A review of optimization and machine learning
- Single and multilayer perceptron models
- Convolutional neural networks (CNNs)
- Recurrent neural networks (RNNs)
- Autoencoders, restricted boltzmann machines, and deep belief networks
- Experimental design and heuristics
- Hardware and software suggestions
- Machine learning example problems
- Deep learning and other example problems
- Closing statements.