Cargando…

Introduction to deep learning using R : a step-by-step guide to learning and implementing deep learning models using R /

Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Lea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Beysolow, Taweh II (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, California?] : Apress, [2017]
Colección:Books for professionals by professionals.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Introduction to deep learning
  • Mathematical review
  • A review of optimization and machine learning
  • Single and multilayer perceptron models
  • Convolutional neural networks (CNNs)
  • Recurrent neural networks (RNNs)
  • Autoencoders, restricted boltzmann machines, and deep belief networks
  • Experimental design and heuristics
  • Hardware and software suggestions
  • Machine learning example problems
  • Deep learning and other example problems
  • Closing statements.