Cargando…

Introduction to deep learning using R : a step-by-step guide to learning and implementing deep learning models using R /

Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Lea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Beysolow, Taweh II (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, California?] : Apress, [2017]
Colección:Books for professionals by professionals.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_on1004390913
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 170706t20172017caua ob 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d OCLCO  |d YDX  |d NJR  |d OCLCF  |d KSU  |d VT2  |d WYU  |d UMI  |d TOH  |d G3B  |d BRX  |d STF  |d AU@  |d UKAHL  |d OCLCQ  |d OCLCO  |d AJB  |d OCLCQ 
015 |a GBB8O2160  |2 bnb 
019 |a 994941272  |a 1048183949  |a 1066624226  |a 1077473905  |a 1097085563  |a 1099235246  |a 1111383792  |a 1151043071  |a 1151948894 
020 |a 9781484227336  |q (paperback) 
020 |a 1484227336  |q (paperback) 
020 |a 9781484227343 
020 |a 1484227344 
024 7 |a 10.1007/978-1-4842-2734-3  |2 doi 
029 1 |a DKDLA  |b 820120-katalog:000773869 
035 |a (OCoLC)1004390913  |z (OCoLC)994941272  |z (OCoLC)1048183949  |z (OCoLC)1066624226  |z (OCoLC)1077473905  |z (OCoLC)1097085563  |z (OCoLC)1099235246  |z (OCoLC)1111383792  |z (OCoLC)1151043071  |z (OCoLC)1151948894 
037 |a CL0501000009  |b Safari Books Online 
050 4 |a Q325.5  |b .B49 2017 
072 7 |a KJQ  |2 bicssc 
072 7 |a BUS070030  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Beysolow, Taweh  |b II,  |e author. 
245 1 0 |a Introduction to deep learning using R :  |b a step-by-step guide to learning and implementing deep learning models using R /  |c Taweh Beysolow II. 
264 1 |a [Berkeley, California?] :  |b Apress,  |c [2017] 
264 2 |a New York, NY :  |b Distributed by Springer Science + Business Media 
264 4 |c ©2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a For professionals by professionals 
505 0 |a Introduction to deep learning -- Mathematical review -- A review of optimization and machine learning -- Single and multilayer perceptron models -- Convolutional neural networks (CNNs) -- Recurrent neural networks (RNNs) -- Autoencoders, restricted boltzmann machines, and deep belief networks -- Experimental design and heuristics -- Hardware and software suggestions -- Machine learning example problems -- Deep learning and other example problems -- Closing statements. 
520 |a Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You Will Learn: • Understand the intuition and mathematics that power deep learning models • Utilize various algorithms using the R programming language and its packages • Use best practices for experimental design and variable selection • Practice the methodology to approach and effectively solve problems as a data scientist • Evaluate the effectiveness of algorithmic solutions and enhance their predictive power. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 0 |a R (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Données volumineuses. 
650 6 |a R (Langage de programmation) 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Business mathematics & systems.  |2 bicssc 
650 7 |a BUSINESS & ECONOMICS  |x Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Reference.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Skills.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
776 0 8 |i Print version:  |a Beysolow, Taweh, II.  |t Introduction to deep learning using R.  |d [Berkeley, California?] : Apress, [2017]  |z 9781484227336  |z 1484227336  |w (OCoLC)973920041 
830 0 |a Books for professionals by professionals. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484227343/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33062890 
938 |a YBP Library Services  |b YANK  |n 14712852 
994 |a 92  |b IZTAP