|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
OR_on1004390913 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170706t20172017caua ob 001 0 eng d |
040 |
|
|
|a COO
|b eng
|e pn
|c COO
|d OCLCO
|d YDX
|d NJR
|d OCLCF
|d KSU
|d VT2
|d WYU
|d UMI
|d TOH
|d G3B
|d BRX
|d STF
|d AU@
|d UKAHL
|d OCLCQ
|d OCLCO
|d AJB
|d OCLCQ
|
015 |
|
|
|a GBB8O2160
|2 bnb
|
019 |
|
|
|a 994941272
|a 1048183949
|a 1066624226
|a 1077473905
|a 1097085563
|a 1099235246
|a 1111383792
|a 1151043071
|a 1151948894
|
020 |
|
|
|a 9781484227336
|q (paperback)
|
020 |
|
|
|a 1484227336
|q (paperback)
|
020 |
|
|
|a 9781484227343
|
020 |
|
|
|a 1484227344
|
024 |
7 |
|
|a 10.1007/978-1-4842-2734-3
|2 doi
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:000773869
|
035 |
|
|
|a (OCoLC)1004390913
|z (OCoLC)994941272
|z (OCoLC)1048183949
|z (OCoLC)1066624226
|z (OCoLC)1077473905
|z (OCoLC)1097085563
|z (OCoLC)1099235246
|z (OCoLC)1111383792
|z (OCoLC)1151043071
|z (OCoLC)1151948894
|
037 |
|
|
|a CL0501000009
|b Safari Books Online
|
050 |
|
4 |
|a Q325.5
|b .B49 2017
|
072 |
|
7 |
|a KJQ
|2 bicssc
|
072 |
|
7 |
|a BUS070030
|2 bisacsh
|
082 |
0 |
4 |
|a 006.31
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Beysolow, Taweh
|b II,
|e author.
|
245 |
1 |
0 |
|a Introduction to deep learning using R :
|b a step-by-step guide to learning and implementing deep learning models using R /
|c Taweh Beysolow II.
|
264 |
|
1 |
|a [Berkeley, California?] :
|b Apress,
|c [2017]
|
264 |
|
2 |
|a New York, NY :
|b Distributed by Springer Science + Business Media
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a For professionals by professionals
|
505 |
0 |
|
|a Introduction to deep learning -- Mathematical review -- A review of optimization and machine learning -- Single and multilayer perceptron models -- Convolutional neural networks (CNNs) -- Recurrent neural networks (RNNs) -- Autoencoders, restricted boltzmann machines, and deep belief networks -- Experimental design and heuristics -- Hardware and software suggestions -- Machine learning example problems -- Deep learning and other example problems -- Closing statements.
|
520 |
|
|
|a Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You Will Learn: • Understand the intuition and mathematics that power deep learning models • Utilize various algorithms using the R programming language and its packages • Use best practices for experimental design and variable selection • Practice the methodology to approach and effectively solve problems as a data scientist • Evaluate the effectiveness of algorithmic solutions and enhance their predictive power.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a R (Computer program language)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a R (Langage de programmation)
|
650 |
|
7 |
|a Artificial intelligence.
|2 bicssc
|
650 |
|
7 |
|a Programming & scripting languages: general.
|2 bicssc
|
650 |
|
7 |
|a Business mathematics & systems.
|2 bicssc
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Management.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Skills.
|2 bisacsh
|
650 |
|
7 |
|a Big data.
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a R (Computer program language)
|2 fast
|0 (OCoLC)fst01086207
|
776 |
0 |
8 |
|i Print version:
|a Beysolow, Taweh, II.
|t Introduction to deep learning using R.
|d [Berkeley, California?] : Apress, [2017]
|z 9781484227336
|z 1484227336
|w (OCoLC)973920041
|
830 |
|
0 |
|a Books for professionals by professionals.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484227343/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33062890
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14712852
|
994 |
|
|
|a 92
|b IZTAP
|