|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1001276747 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170815s2017 caua ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d TEFOD
|d N$T
|d TEFOD
|d IDEBK
|d EBLCP
|d UMI
|d MERER
|d OCLCF
|d OCLCQ
|d TOH
|d STF
|d OCLCQ
|d MERUC
|d NAM
|d VT2
|d OCLCQ
|d HCO
|d UOK
|d CEF
|d KSU
|d OCLCQ
|d INT
|d OCLCQ
|d WYU
|d C6I
|d UAB
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1001310118
|a 1001326799
|a 1001382834
|a 1001514385
|
020 |
|
|
|a 9781491922958
|q (electronic bk.)
|
020 |
|
|
|a 1491922958
|q (electronic bk.)
|
020 |
|
|
|a 9781491922941
|q (electronic bk.)
|
020 |
|
|
|a 149192294X
|q (electronic bk.)
|
020 |
|
|
|z 1491922877
|
020 |
|
|
|z 9781491922873
|
020 |
|
|
|z 9781491922927
|
029 |
1 |
|
|a AU@
|b 000060742933
|
029 |
1 |
|
|a GBVCP
|b 1004860315
|
035 |
|
|
|a (OCoLC)1001276747
|z (OCoLC)1001310118
|z (OCoLC)1001326799
|z (OCoLC)1001382834
|z (OCoLC)1001514385
|
037 |
|
|
|a 34083E08-09D2-426B-82D9-984F390A5159
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.73.P98
|
072 |
|
7 |
|a COM
|x 051360
|2 bisacsh
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Nunez-Iglesias, Juan.
|
245 |
1 |
0 |
|a Elegant sciPy :
|b the art of scientific Python /
|c Juan Nunez-Iglesias, Stéfan van der Walt, and Harriet Dashnow.
|
246 |
3 |
0 |
|a Art of scientific Python
|
250 |
|
|
|a First edition.
|
260 |
|
|
|a Sebastopol, CA :
|b O'Reilly Media,
|c 2017.
|
300 |
|
|
|a 1 online resource (xxii, 251 pages) :
|b color illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Copyright; Table of Contents; Preface; Who Is This Book For?; Why SciPy?; What Is the SciPy Ecosystem?; The Great Cataclysm: Python 2 Versus Python 3; SciPy Ecosystem and Community; Free and Open Source Software (FOSS); GitHub: Taking Coding Social; Make Your Mark on the SciPy Ecosystem; A Touch of Whimsy with Your Py; Getting Help; Installing Python; Accessing the Book Materials; Diving In; Conventions Used in This Book; Use of Color; Using Code Examples; O'Reilly Safari; How to Contact Us; Acknowledgments; Chapter 1. Elegant NumPy: The Foundation of Scientific Python.
|
505 |
8 |
|
|a Introduction to the Data: What Is Gene Expression?NumPy N-Dimensional Arrays; Why Use ndarrays Instead of Python Lists?; Vectorization; Broadcasting; Exploring a Gene Expression Dataset; Reading in the Data with pandas; Normalization; Between Samples; Between Genes; Normalizing Over Samples and Genes: RPKM; Taking Stock; Chapter 2. Quantile Normalization with NumPy and SciPy; Getting the Data; Gene Expression Distribution Differences Between Individuals; Biclustering the Counts Data; Visualizing Clusters; Predicting Survival; Further Work: Using the TCGA's Patient Clusters.
|
505 |
8 |
|
|a Further Work: Reproducing the TCGA's clustersChapter 3. Networks of Image Regions with ndimage; Images Are Just NumPy Arrays; Exercise: Adding a Grid Overlay; Filters in Signal Processing; Filtering Images (2D Filters); Generic Filters: Arbitrary Functions of Neighborhood Values; Exercise: Conway's Game of Life; Exercise: Sobel Gradient Magnitude; Graphs and the NetworkX library; Exercise: Curve Fitting with SciPy; Region Adjacency Graphs; Elegant ndimage: How to Build Graphs from Image Regions; Putting It All Together: Mean Color Segmentation.
|
505 |
8 |
|
|a Chapter 4. Frequency and the Fast Fourier TransformIntroducing Frequency; Illustration: A Birdsong Spectrogram; History; Implementation; Choosing the Length of the DFT; More DFT Concepts; Frequencies and Their Ordering; Windowing; Real-World Application: Analyzing Radar Data; Signal Properties in the Frequency Domain; Windowing, Applied; Radar Images; Further Applications of the FFT; Further Reading; Exercise: Image Convolution; Chapter 5. Contingency Tables Using Sparse Coordinate Matrices; Contingency Tables; Exercise: Computational Complexity of Confusion Matrices.
|
505 |
8 |
|
|a Exercise: Alternative Algorithm to Compute the Confusion MatrixExercise: Multiclass Confusion Matrix; scipy.sparse Data Formats; COO Format; Exercise: COO Representation; Compressed Sparse Row Format; Applications of Sparse Matrices: Image Transformations; Exercise: Image Rotation; Back to Contingency Tables; Exercise: Reducing the Memory Footprint; Contingency Tables in Segmentation; Information Theory in Brief; Exercise: Computing Conditional Entropy; Information Theory in Segmentation: Variation of Information; Converting NumPy Array Code to Use Sparse Matrices.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Numerical analysis.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Analyse numérique.
|
650 |
|
7 |
|a COMPUTERS
|x Programming Languages
|x Python.
|2 bisacsh
|
650 |
|
7 |
|a Numerical analysis.
|2 fast
|0 (OCoLC)fst01041273
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
700 |
1 |
|
|a Van der Walt, Stéfan.
|
700 |
1 |
|
|a Dashnow, Harriet.
|
776 |
0 |
8 |
|i Print version:
|z 1491922877
|z 9781491922873
|w (OCoLC)926743874
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781491922927/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33175681
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33092900
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4946492
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1573871
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis38736214
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14749676
|
994 |
|
|
|a 92
|b IZTAP
|