Cargando…

Learn how to build intelligent data applications with Amazon Web Services (AWS) : understanding and using AWS products and services, AWS Data Pipeline, Kinesis Analytics, RDS and Redshift databases, and Amazon Machine Learning /

"This course shows you how to use a range of AWS services to create intelligent end-to-end applications that incorporate ingestion, storage, preprocessing, machine learning (ML), and connectivity to an application client or server. The course is designed for data scientists looking for clear in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hearty, John (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1000390998
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 170811s2017 xx 204 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1000390998 
037 |a CL0500000883  |b Safari Books Online 
050 4 |a QA76.585 
049 |a UAMI 
100 1 |a Hearty, John,  |e speaker. 
245 1 0 |a Learn how to build intelligent data applications with Amazon Web Services (AWS) :  |b understanding and using AWS products and services, AWS Data Pipeline, Kinesis Analytics, RDS and Redshift databases, and Amazon Machine Learning /  |c with John Hearty. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2017] 
300 |a 1 online resource (1 streaming video file (3 hr., 23 min., 42 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, John Hearty. 
500 |a Title from title screen (viewed August 10, 2017). 
500 |a Date of publication from resource description page. 
520 |a "This course shows you how to use a range of AWS services to create intelligent end-to-end applications that incorporate ingestion, storage, preprocessing, machine learning (ML), and connectivity to an application client or server. The course is designed for data scientists looking for clear instruction on how to deploy locally developed ML applications to the AWS platform, and for developers who want to add machine learning capabilities to their applications using AWS services. Prerequisites include: Basic awareness of Amazon Simple Storage Service (S3), Elastic Compute Cloud (EC2), and Amazon Elastic MapReduce; as well as some knowledge of ML concepts like classification and regression analysis, model types, training and performance measures; and a general understanding of Python."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
610 2 0 |a Amazon Web Services (Firm) 
610 2 7 |a Amazon Web Services (Firm)  |2 fast  |0 (OCoLC)fst01974501 
650 0 |a Cloud computing. 
650 0 |a Web services. 
650 0 |a Machine learning. 
650 6 |a Infonuagique. 
650 6 |a Services Web. 
650 6 |a Apprentissage automatique. 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Web services.  |2 fast  |0 (OCoLC)fst01173242 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491985632/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP