Cargando…

Statistics for machine learning : build supervised, unsupervised, and reinforcement learning models using both Python and R /

Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clus...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dangeti, Pratap (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1000390984
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 170811s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d TOH  |d STF  |d COO  |d N$T  |d UOK  |d CEF  |d OCLCF  |d KSU  |d UAB  |d MM9  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1171043140 
020 |a 9781788291224  |q (electronic bk.) 
020 |a 1788291220  |q (electronic bk.) 
020 |z 9781788295758 
029 1 |a GBVCP  |b 1004865201 
035 |a (OCoLC)1000390984  |z (OCoLC)1171043140 
037 |a CL0500000883  |b Safari Books Online 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
072 7 |a COM  |x 018000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Dangeti, Pratap,  |e author. 
245 1 0 |a Statistics for machine learning :  |b build supervised, unsupervised, and reinforcement learning models using both Python and R /  |c Pratap Dangeti. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed February 8, 2018) 
520 |a Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python. Who This Book Is For This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful. What You Will Learn Understand the Statistical and Machine Learning fundamentals necessary to build models Understand the major differences and parallels between the statistical way and the Machine Learning way to solve problems Learn how to prepare data and feed models by using the appropriate Machine Learning algorithms from the more-than-adequate R and Python packages Analyze the results and tune the model appropriately to your own predictive goals Understand the concepts of required statistics for Machine Learning Introduce yourself to necessary fundamentals required for building supervised & unsupervised deep learning models Learn reinforcement learning and its application in the field of artificial intelligence domain In Detail Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. You will also design programs for performing tasks such as model, parameter fitting, regression, classification, density collection, and more. By the end of the book, you will have mastered the required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problem. Style and approach This practical, step-by-step guide will give you an understanding of the Statistical and Machine Learning fundamentals you'll need to build models. Downloading the example code for this book. You can download the example code files for al ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Big data  |x Statistical methods. 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a R (Computer program language) 
650 6 |a Données volumineuses  |x Méthodes statistiques. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a R (Langage de programmation) 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788295758/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1560931 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38537669 
994 |a 92  |b IZTAP