Cargando…

Java : data science made easy : data collection, processing, analysis, and more : a course in two modules.

Data collection, processing, analysis, and more About This Book Your entry ticket to the world of data science with the stability and power of Java Explore, analyse, and visualize your data effectively using easy-to-follow examples A highly practical course covering a broad set of topics - from the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Reese, Richard M. (Autor), Reese, Jennifer L. (Autor), Grigorev, Alexey (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn995052720
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 170726s2017 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d IDEBK  |d TOH  |d UPM  |d OCLCF  |d TEFOD  |d COO  |d UOK  |d CEF  |d KSU  |d INT  |d AU@  |d OCLCQ  |d UKMGB  |d UAB  |d UKAHL  |d CZL  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB7F4848  |2 bnb 
016 7 |a 018470861  |2 Uk 
020 |a 9781788479189  |q (electronic bk.) 
020 |a 1788479181  |q (electronic bk.) 
020 |z 9781788475655 
029 1 |a GBVCP  |b 1004865449 
029 1 |a UKMGB  |b 018470861 
035 |a (OCoLC)995052720 
037 |a CL0500000878  |b Safari Books Online 
037 |a 679168EE-36F4-4179-B164-6868D16D630A  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.J38 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Reese, Richard M.,  |e author. 
245 1 0 |a Java :  |b data science made easy : data collection, processing, analysis, and more : a course in two modules. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based on online resource; title from title page (Safari, viewed July 25, 2017). 
500 |a Authors: Richard M. Reese, Jennifer L. Reese, Alexey Grigorev. Cf. Credits page. 
500 |a "Learning path"--Cover. 
504 |a Includes bibliographical references. 
520 |a Data collection, processing, analysis, and more About This Book Your entry ticket to the world of data science with the stability and power of Java Explore, analyse, and visualize your data effectively using easy-to-follow examples A highly practical course covering a broad set of topics - from the basics of Machine Learning to Deep Learning and Big Data frameworks. Who This Book Is For This course is meant for Java developers who are comfortable developing applications in Java, and now want to enter the world of data science or wish to build intelligent applications. Aspiring data scientists with some understanding of the Java programming language will also find this book to be very helpful. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing your existing Java stack, this book is for you! What You Will Learn Understand the key concepts of data science Explore the data science ecosystem available in Java Work with the Java APIs and techniques used to perform efficient data analysis Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images, and create your own search Learn how to build deep neural networks with DeepLearning4j Build data science applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on t... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Java (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Application software  |x Development. 
650 6 |a Java (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a COMPUTERS  |x Databases  |x Data Mining.  |2 bisacsh 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Java (Computer program language)  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Reese, Jennifer L.,  |e author. 
700 1 |a Grigorev, Alexey,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788475655/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0034521884 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38463852 
994 |a 92  |b IZTAP