Cargando…

Text mining with R : a tidy approach /

Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Silge, Julia (Autor), Robinson, David (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2017.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn990182937
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 170616s2017 cau ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d EBLCP  |d UMI  |d OCLCF  |d TEFOD  |d MERER  |d TOH  |d OCLCQ  |d STF  |d COO  |d CEF  |d KSU  |d U3W  |d INT  |d WYU  |d OCLCQ  |d C6I  |d VT2  |d ZCU  |d UAB  |d OCLCQ  |d UKAHL  |d OL$  |d OCLCQ  |d OCLCO  |d NWQ  |d OCLCQ  |d OCL  |d OCLCO 
019 |a 990784806  |a 1047650736  |a 1103281625  |a 1129365509 
020 |a 9781491981627  |q (electronic bk.) 
020 |a 1491981628  |q (electronic bk.) 
020 |a 9781491981603  |q (electronic bk.) 
020 |a 1491981601  |q (electronic bk.) 
020 |a 1491981652 
020 |a 9781491981658 
020 |z 9781491981658 
029 1 |a AU@  |b 000060837061 
029 1 |a GBVCP  |b 1004860846 
029 1 |a AU@  |b 000067114166 
029 1 |a AU@  |b 000074359761 
035 |a (OCoLC)990182937  |z (OCoLC)990784806  |z (OCoLC)1047650736  |z (OCoLC)1103281625  |z (OCoLC)1129365509 
037 |a CL0500000868  |b Safari Books Online 
037 |a 9BBD51B3-309B-4D73-A038-CF497B682C71  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA276.45.R3 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Silge, Julia,  |e author. 
245 1 0 |a Text mining with R :  |b a tidy approach /  |c Julia Silge and David Robinson. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed June 20, 2017). 
504 |a Includes bibliographical references and index. 
505 0 |a Copyright; Table of Contents; Preface; Outline; Topics This Book Does Not Cover; About This Book; Conventions Used in This Book; Using Code Examples; O'Reilly Safari; How to Contact Us; Acknowledgements; Chapter 1. The Tidy Text Format; Contrasting Tidy Text with Other Data Structures; The unnest_tokens Function; Tidying the Works of Jane Austen; The gutenbergr Package; Word Frequencies; Summary; Chapter 2. Sentiment Analysis with Tidy Data; The sentiments Dataset; Sentiment Analysis with Inner Join; Comparing the Three Sentiment Dictionaries; Most Common Positive and Negative Words. 
505 8 |a WordcloudsLooking at Units Beyond Just Words; Summary; Chapter 3. Analyzing Word and Document Frequency: tf-idf; Term Frequency in Jane Austen's Novels; Zipf's Law; The bind_tf_idf Function; A Corpus of Physics Texts; Summary; Chapter 4. Relationships Between Words: N-grams and Correlations; Tokenizing by N-gram; Counting and Filtering N-grams; Analyzing Bigrams; Using Bigrams to Provide Context in Sentiment Analysis; Visualizing a Network of Bigrams with ggraph; Visualizing Bigrams in Other Texts; Counting and Correlating Pairs of Words with the widyr Package. 
505 8 |a Counting and Correlating Among SectionsExamining Pairwise Correlation; Summary; Chapter 5. Converting to and from Nontidy Formats; Tidying a Document-Term Matrix; Tidying DocumentTermMatrix Objects; Tidying dfm Objects; Casting Tidy Text Data into a Matrix; Tidying Corpus Objects with Metadata; Example: Mining Financial Articles; Summary; Chapter 6. Topic Modeling; Latent Dirichlet Allocation; Word-Topic Probabilities; Document-Topic Probabilities; Example: The Great Library Heist; LDA on Chapters; Per-Document Classification; By-Word Assignments: augment; Alternative LDA Implementations. 
505 8 |a Casting to a Document-Term MatrixReady for Topic Modeling; Interpreting the Topic Model; Connecting Topic Modeling with Keywords; Summary; Chapter 9. Case Study: Analyzing Usenet Text; Preprocessing; Preprocessing Text; Words in Newsgroups; Finding tf-idf Within Newsgroups; Topic Modeling; Sentiment Analysis; Sentiment Analysis by Word; Sentiment Analysis by Message; N-gram Analysis; Summary; Bibliography; Index; About the Authors; Colophon. 
505 0 |a Chapter 7. Case Study: Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study: Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling. 
520 |a Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.--  |c Provided by Publisher. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R (Computer program language) 
650 0 |a Data mining. 
650 0 |a Discourse analysis  |x Data processing. 
650 0 |a Natural language processing (Computer science) 
650 2 |a Data Mining 
650 2 |a Natural Language Processing 
650 6 |a R (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 6 |a Traitement automatique des langues naturelles. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Natural language processing (Computer science)  |2 fast 
650 7 |a Discourse analysis  |x Data processing  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
700 1 |a Robinson, David,  |e author. 
776 0 8 |i Print version:  |a Silge, Julia.  |t Text mining with R.  |b First edition.  |d Bejing ; Boston : O'Reilly, 2017  |w (DLC) 2017471546 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491981641/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32910986 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32906489 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4876883 
938 |a EBSCOhost  |b EBSC  |n 1533983 
938 |a YBP Library Services  |b YANK  |n 14578896 
994 |a 92  |b IZTAP