|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
OR_ocn989872334 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
170612s2017 mau o 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d EBLCP
|d UMI
|d TEFOD
|d OCLCF
|d YDX
|d MERER
|d TOH
|d OCLCQ
|d VT2
|d HCO
|d CEF
|d KSU
|d OCLCQ
|d WYU
|d C6I
|d ZCU
|d UAB
|d AU@
|d OCLCQ
|d OCLCO
|d OCLCQ
|d INARC
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 990006684
|a 990784805
|a 993775995
|a 999511815
|a 1000362692
|a 1048125939
|a 1066467451
|a 1103282790
|a 1129378442
|
020 |
|
|
|a 9781491960080
|q (electronic bk.)
|
020 |
|
|
|a 1491960086
|q (electronic bk.)
|
020 |
|
|
|a 9781491960066
|q (electronic bk.)
|
020 |
|
|
|a 149196006X
|q (electronic bk.)
|
020 |
|
|
|z 9781491960110
|
020 |
|
|
|z 1491960116
|
029 |
1 |
|
|a AU@
|b 000060837024
|
029 |
1 |
|
|a GBVCP
|b 1004860595
|
029 |
1 |
|
|a AU@
|b 000067104259
|
035 |
|
|
|a (OCoLC)989872334
|z (OCoLC)990006684
|z (OCoLC)990784805
|z (OCoLC)993775995
|z (OCoLC)999511815
|z (OCoLC)1000362692
|z (OCoLC)1048125939
|z (OCoLC)1066467451
|z (OCoLC)1103282790
|z (OCoLC)1129378442
|
037 |
|
|
|a CL0500000868
|b Safari Books Online
|
037 |
|
|
|a 145F29F2-7BD2-4DDA-8C6B-3B45BA43AAA6
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.9.D343
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.312
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Jurney, Russell,
|e author.
|
245 |
1 |
0 |
|a Agile data science 2.0 :
|b building full-stack data analytics applications with Spark /
|c Russell Jurney.
|
264 |
|
1 |
|a Boston, MA :
|b O'Reilly Media,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed June 13, 2017).
|
505 |
0 |
|
|a Copyright; Table of Contents; Preface; Agile Data Science Mailing List; Data Syndrome, Product Analytics Consultancy; Live Training; Who This Book Is For; How This Book Is Organized; Conventions Used in This Book; Using Code Examples; O'Reilly Safari; How to Contact Us; Part I. Setup; Chapter 1. Theory; Introduction; Definition; Methodology as Tweet; Agile Data Science Manifesto; The Problem with the Waterfall; Research Versus Application Development; The Problem with Agile Software; Eventual Quality: Financing Technical Debt; The Pull of the Waterfall; The Data Science Process.
|
505 |
8 |
|
|a Setting ExpectationsData Science Team Roles; Recognizing the Opportunity and the Problem; Adapting to Change; Notes on Process; Code Review and Pair Programming; Agile Environments: Engineering Productivity; Realizing Ideas with Large-Format Printing; Chapter 2. Agile Tools; Scalability = Simplicity; Agile Data Science Data Processing; Local Environment Setup; System Requirements; Setting Up Vagrant; Downloading the Data; EC2 Environment Setup; Downloading the Data; Getting and Running the Code; Getting the Code; Running the Code; Jupyter Notebooks; Touring the Toolset.
|
505 |
8 |
|
|a Agile Stack RequirementsPython 3; Serializing Events with JSON Lines and Parquet; Collecting Data; Data Processing with Spark; Publishing Data with MongoDB; Searching Data with Elasticsearch; Distributed Streams with Apache Kafka; Processing Streams with PySpark Streaming; Machine Learning with scikit-learn and Spark MLlib; Scheduling with Apache Airflow (Incubating); Reflecting on Our Workflow; Lightweight Web Applications; Presenting Our Data; Conclusion; Chapter 3. Data; Air Travel Data; Flight On-Time Performance Data; OpenFlights Database; Weather Data.
|
505 |
8 |
|
|a Data Processing in Agile Data ScienceStructured Versus Semistructured Data; SQL Versus NoSQL; SQL; NoSQL and Dataflow Programming; Spark: SQL + NoSQL; Schemas in NoSQL; Data Serialization; Extracting and Exposing Features in Evolving Schemas; Conclusion; Part II. Climbing the Pyramid; Chapter 4. Collecting and Displaying Records; Putting It All Together; Collecting and Serializing Flight Data; Processing and Publishing Flight Records; Publishing Flight Records to MongoDB; Presenting Flight Records in a Browser; Serving Flights with Flask and pymongo; Rendering HTML5 with Jinja2.
|
505 |
8 |
|
|a Agile CheckpointListing Flights; Listing Flights with MongoDB; Paginating Data; Searching for Flights; Creating Our Index; Publishing Flights to Elasticsearch; Searching Flights on the Web; Conclusion; Chapter 5. Visualizing Data with Charts and Tables; Chart Quality: Iteration Is Essential; Scaling a Database in the Publish/Decorate Model; First Order Form; Second Order Form; Third Order Form; Choosing a Form; Exploring Seasonality; Querying and Presenting Flight Volume; Extracting Metal (Airplanes [Entities]); Extracting Tail Numbers; Assessing Our Airplanes; Data Enrichment.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Agile software development.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Méthodes agiles (Développement de logiciels)
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Agile software development
|2 fast
|
650 |
|
7 |
|a Data mining
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Jurney, Russell.
|t Agile data science 2.0.
|d ©2017
|z 9781491960110
|z 1491960116
|w (OCoLC)959878137
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781491960103/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Internet Archive
|b INAR
|n agiledatascience0000jurn
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4873402
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1531811
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14554511
|
994 |
|
|
|a 92
|b IZTAP
|