Cargando…

Data science with Java : practical methods for scientists and engineers /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Brzustowicz, Michael R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : O'Reilly Media, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn989872333
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 170612t20172017maua o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d EBLCP  |d OCLCF  |d UMI  |d YDX  |d MERER  |d OCLCQ  |d TEFOD  |d GZM  |d VT2  |d CEF  |d KSU  |d UAB  |d RDF  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 990000390  |a 990066401  |a 993756559 
020 |a 9781491934081  |q (electronic bk.) 
020 |a 1491934085  |q (electronic bk.) 
020 |a 9781491934067  |q (electronic bk.) 
020 |a 1491934069  |q (electronic bk.) 
020 |z 9781491934111 
020 |z 1491934115 
029 1 |a AU@  |b 000060837028 
029 1 |a GBVCP  |b 1004860382 
029 1 |a AU@  |b 000067106330 
035 |a (OCoLC)989872333  |z (OCoLC)990000390  |z (OCoLC)990066401  |z (OCoLC)993756559 
037 |a CL0500000866  |b Safari Books Online 
037 |a E70235CC-7051-47AE-8547-92180873C56A  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.J39 
072 7 |a COM  |x 051260  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Brzustowicz, Michael R.,  |e author. 
245 1 0 |a Data science with Java :  |b practical methods for scientists and engineers /  |c Michael R. Brzustowicz. 
264 1 |a Boston, MA :  |b O'Reilly Media,  |c 2017. 
264 4 |c ©2017 
300 |a 1 online resource (233 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed January 24, 2018). 
505 0 |a Copyright; Table of Contents; Preface; Who Should Read This Book; Why I Wrote This Book; A Word on Data Science Today; Navigating This Book; Conventions Used in This Book; Using Code Examples; O'Reilly Safari; How to Contact Us; Acknowledgments; Chapter 1. Data I/O; What Is Data, Anyway?; Data Models; Univariate Arrays; Multivariate Arrays; Data Objects; Matrices and Vectors; JSON; Dealing with Real Data; Nulls; Blank Spaces; Parse Errors; Outliers; Managing Data Files; Understanding File Contents First; Reading from a Text File; Reading from a JSON File; Reading from an Image File 
505 8 |a Writing to a Text FileMastering Database Operations; Command-Line Clients; Structured Query Language; Java Database Connectivity; Visualizing Data with Plots; Creating Simple Plots; Plotting Mixed Chart Types; Saving a Plot to a File; Chapter 2. Linear Algebra; Building Vectors and Matrices; Array Storage; Block Storage; Map Storage; Accessing Elements; Working with Submatrices; Randomization; Operating on Vectors and Matrices; Scaling; Transposing; Addition and Subtraction; Length; Distances; Multiplication; Inner Product; Outer Product; Entrywise Product; Compound Operations 
505 8 |a Affine TransformationMapping a Function; Decomposing Matrices; Cholesky Decomposition; LU Decomposition; QR Decomposition; Singular Value Decomposition; Eigen Decomposition; Determinant; Inverse; Solving Linear Systems; Chapter 3. Statistics; The Probabilistic Origins of Data; Probability Density; Cumulative Probability; Statistical Moments; Entropy; Continuous Distributions; Discrete Distributions; Characterizing Datasets; Calculating Moments; Descriptive Statistics; Multivariate Statistics; Covariance and Correlation; Regression; Working with Large Datasets; Accumulating Statistics 
505 8 |a Merging StatisticsRegression; Using Built-in Database Functions; Chapter 4. Data Operations; Transforming Text Data; Extracting Tokens from a Document; Utilizing Dictionaries; Vectorizing a Document; Scaling and Regularizing Numeric Data; Scaling Columns; Scaling Rows; Matrix Scaling Operator; Reducing Data to Principal Components; Covariance Method; SVD Method; Creating Training, Validation, and Test Sets; Index-Based Resampling; List-Based Resampling; Mini-Batches; Encoding Labels; A Generic Encoder; One-Hot Encoding; Chapter 5. Learning and Prediction; Learning Algorithms 
505 8 |a Iterative Learning ProcedureGradient Descent Optimizer; Evaluating Learning Processes; Minimizing a Loss Function; Minimizing the Sum of Variances; Silhouette Coefficient; Log-Likelihood; Classifier Accuracy; Unsupervised Learning; k-Means Clustering; DBSCAN; Gaussian Mixtures; Supervised Learning; Naive Bayes; Linear Models; Deep Networks; Chapter 6. Hadoop MapReduce; Hadoop Distributed File System; MapReduce Architecture; Writing MapReduce Applications; Anatomy of a MapReduce Job; Hadoop Data Types; Mappers; Reducers; The Simplicity of a JSON String as Text; Deployment Wizardry 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Java (Computer program language) 
650 0 |a Data structures (Computer science) 
650 6 |a Java (Langage de programmation) 
650 6 |a Structures de données (Informatique) 
650 7 |a COMPUTERS  |x Programming Languages  |x JavaScript.  |2 bisacsh 
650 7 |a Data structures (Computer science)  |2 fast 
650 7 |a Java (Computer program language)  |2 fast 
776 0 8 |i Print version: Brzustowicz, Michael R.  |t Data science with Java.  |b First edition.  |d Sebastopol, CA : O'Reilly Media, 2017  |z 9781491934111  |w (DLC) 2017448763  |w (OCoLC)1019840271 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491934104/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32910979 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32910980 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4873401 
938 |a EBSCOhost  |b EBSC  |n 1531809 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38346456 
938 |a YBP Library Services  |b YANK  |n 14554510 
994 |a 92  |b IZTAP