|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
OR_ocn989872333 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
170612t20172017maua o 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d IDEBK
|d EBLCP
|d OCLCF
|d UMI
|d YDX
|d MERER
|d OCLCQ
|d TEFOD
|d GZM
|d VT2
|d CEF
|d KSU
|d UAB
|d RDF
|d OCLCO
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 990000390
|a 990066401
|a 993756559
|
020 |
|
|
|a 9781491934081
|q (electronic bk.)
|
020 |
|
|
|a 1491934085
|q (electronic bk.)
|
020 |
|
|
|a 9781491934067
|q (electronic bk.)
|
020 |
|
|
|a 1491934069
|q (electronic bk.)
|
020 |
|
|
|z 9781491934111
|
020 |
|
|
|z 1491934115
|
029 |
1 |
|
|a AU@
|b 000060837028
|
029 |
1 |
|
|a GBVCP
|b 1004860382
|
029 |
1 |
|
|a AU@
|b 000067106330
|
035 |
|
|
|a (OCoLC)989872333
|z (OCoLC)990000390
|z (OCoLC)990066401
|z (OCoLC)993756559
|
037 |
|
|
|a CL0500000866
|b Safari Books Online
|
037 |
|
|
|a E70235CC-7051-47AE-8547-92180873C56A
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.73.J39
|
072 |
|
7 |
|a COM
|x 051260
|2 bisacsh
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Brzustowicz, Michael R.,
|e author.
|
245 |
1 |
0 |
|a Data science with Java :
|b practical methods for scientists and engineers /
|c Michael R. Brzustowicz.
|
264 |
|
1 |
|a Boston, MA :
|b O'Reilly Media,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (233 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed January 24, 2018).
|
505 |
0 |
|
|a Copyright; Table of Contents; Preface; Who Should Read This Book; Why I Wrote This Book; A Word on Data Science Today; Navigating This Book; Conventions Used in This Book; Using Code Examples; O'Reilly Safari; How to Contact Us; Acknowledgments; Chapter 1. Data I/O; What Is Data, Anyway?; Data Models; Univariate Arrays; Multivariate Arrays; Data Objects; Matrices and Vectors; JSON; Dealing with Real Data; Nulls; Blank Spaces; Parse Errors; Outliers; Managing Data Files; Understanding File Contents First; Reading from a Text File; Reading from a JSON File; Reading from an Image File
|
505 |
8 |
|
|a Writing to a Text FileMastering Database Operations; Command-Line Clients; Structured Query Language; Java Database Connectivity; Visualizing Data with Plots; Creating Simple Plots; Plotting Mixed Chart Types; Saving a Plot to a File; Chapter 2. Linear Algebra; Building Vectors and Matrices; Array Storage; Block Storage; Map Storage; Accessing Elements; Working with Submatrices; Randomization; Operating on Vectors and Matrices; Scaling; Transposing; Addition and Subtraction; Length; Distances; Multiplication; Inner Product; Outer Product; Entrywise Product; Compound Operations
|
505 |
8 |
|
|a Affine TransformationMapping a Function; Decomposing Matrices; Cholesky Decomposition; LU Decomposition; QR Decomposition; Singular Value Decomposition; Eigen Decomposition; Determinant; Inverse; Solving Linear Systems; Chapter 3. Statistics; The Probabilistic Origins of Data; Probability Density; Cumulative Probability; Statistical Moments; Entropy; Continuous Distributions; Discrete Distributions; Characterizing Datasets; Calculating Moments; Descriptive Statistics; Multivariate Statistics; Covariance and Correlation; Regression; Working with Large Datasets; Accumulating Statistics
|
505 |
8 |
|
|a Merging StatisticsRegression; Using Built-in Database Functions; Chapter 4. Data Operations; Transforming Text Data; Extracting Tokens from a Document; Utilizing Dictionaries; Vectorizing a Document; Scaling and Regularizing Numeric Data; Scaling Columns; Scaling Rows; Matrix Scaling Operator; Reducing Data to Principal Components; Covariance Method; SVD Method; Creating Training, Validation, and Test Sets; Index-Based Resampling; List-Based Resampling; Mini-Batches; Encoding Labels; A Generic Encoder; One-Hot Encoding; Chapter 5. Learning and Prediction; Learning Algorithms
|
505 |
8 |
|
|a Iterative Learning ProcedureGradient Descent Optimizer; Evaluating Learning Processes; Minimizing a Loss Function; Minimizing the Sum of Variances; Silhouette Coefficient; Log-Likelihood; Classifier Accuracy; Unsupervised Learning; k-Means Clustering; DBSCAN; Gaussian Mixtures; Supervised Learning; Naive Bayes; Linear Models; Deep Networks; Chapter 6. Hadoop MapReduce; Hadoop Distributed File System; MapReduce Architecture; Writing MapReduce Applications; Anatomy of a MapReduce Job; Hadoop Data Types; Mappers; Reducers; The Simplicity of a JSON String as Text; Deployment Wizardry
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Java (Computer program language)
|
650 |
|
0 |
|a Data structures (Computer science)
|
650 |
|
6 |
|a Java (Langage de programmation)
|
650 |
|
6 |
|a Structures de données (Informatique)
|
650 |
|
7 |
|a COMPUTERS
|x Programming Languages
|x JavaScript.
|2 bisacsh
|
650 |
|
7 |
|a Data structures (Computer science)
|2 fast
|
650 |
|
7 |
|a Java (Computer program language)
|2 fast
|
776 |
0 |
8 |
|i Print version: Brzustowicz, Michael R.
|t Data science with Java.
|b First edition.
|d Sebastopol, CA : O'Reilly Media, 2017
|z 9781491934111
|w (DLC) 2017448763
|w (OCoLC)1019840271
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781491934104/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH32910979
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH32910980
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4873401
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1531809
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis38346456
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14554510
|
994 |
|
|
|a 92
|b IZTAP
|