Statistical learning with sparsity : the lasso and generalizations /
Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents metho...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton :
Chapman & Hall/CRC,
2015.
|
Edición: | 1st. |
Colección: | Chapman & Hall/CRC monographs on statistics & applied probability
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- 1. Introduction
- 2. The lasso for linear models
- 3. Generalized linear models
- 4. Generalizations of the lasso penalty
- 5. Optimization methods
- 6. Statistical inference
- 7. Matrix decompositions, approximations, and completion
- 8. Sparse multivariate methods
- 9. Graphs and model selection
- 10. Signal approximation and compressed sensing
- 11. Theoretical results for the lasso.