Text mining and visualization : case studies using open-source tools /
Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton :
Chapman & Hall/CRC,
2016.
|
Edición: | 1st. |
Colección: | Chapman & Hall/CRC data mining and knowledge discovery series.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Front Cover; Contents; I: RapidMiner; 1. RapidMiner for Text Analytic Fundamentals; 2. Empirical Zipf-Mandelbrot Variation for Sequential Windows within Documents; II: KNIME; 3. Introduction to the KNIME Text Processing Extension; 4. Social Media Analysis
- Text Mining Meets Network Mining; III: Python; 5. Mining Unstructured User Reviews with Python; 6. Sentiment Classification and Visualization of Product Review Data; 7. Mining Search Logs for Usage Patterns; 8. Temporally Aware Online News Mining and Visualization with Python; 9. Text Classification Using Python; IV: R.
- 10. Sentiment Analysis of Stock Market Behavior from Twitter Using the R Tool11. Topic Modeling; 12. Empirical Analysis of the Stack Overflow Tags Network; Back Cover.