Cargando…

Spark : the definitive guide : big data processing made simple /

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chambers, Bill (William Andrew) (Autor), Zaharia, Matei (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2018]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Part 1. Gentle overview of big data and Spark. What is Apache Spark?
  • A gentle introduction to Spark
  • A tour of Spark's toolset
  • Part 2. Structured APIs : DataFrames, SQL, and datasets. Structured API overview
  • Basic structured operations
  • Working with different types of data
  • Aggregations
  • Joins
  • Data sources
  • Spark SQL
  • Datasets
  • Part 3. Low-level APIs. Resilient distributed datasets (RDDs)
  • Advanced RDDs
  • Distributed shared variables
  • Part 4. Production applications. How Spark runs on a cluster
  • Developint Spark applications
  • Deploying Spark
  • Monitoring and debugging
  • Performance tuning
  • Part 5. Streaming. Stream processing fundamentals
  • Structured streaming basics
  • Event-time and stateful processing
  • Structured streaming in production
  • Part 6. Advanced analytics and machine learning. Advanced analytics and machine learning overview
  • Preprocessing and feature engineering
  • Classification
  • Regression
  • Recommendation
  • Unsupervised learning
  • Graph analytics
  • Deep learning
  • Part 7. Ecosystem. Language specifics : Python (PySpark) and R (SparkR and sparklyr)
  • Ecosystem and community.