Cargando…

Mastering Java for data science : building data science applications in Java /

Use Java to create a diverse range of Data Science applications and bring Data Science into production About This Book An overview of modern Data Science and Machine Learning libraries available in Java Coverage of a broad set of topics, going from the basics of Machine Learning to Deep Learning and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grigorev, Alexey (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn987330982
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 170516s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d TOH  |d OCLCF  |d IDEBK  |d NLE  |d OCLCQ  |d CEF  |d KSU  |d OCLCQ  |d UKMGB  |d UAB  |d N$T  |d QGK  |d OCLCO  |d UKAHL  |d OCLCQ 
015 |a GBB799704  |2 bnb 
016 7 |a 018354671  |2 Uk 
019 |a 989061644 
020 |a 1785887394 
020 |a 9781785887390  |q (electronic bk.) 
020 |z 9781782174271 
029 1 |a GBVCP  |b 1004862342 
029 1 |a UKMGB  |b 018354671 
035 |a (OCoLC)987330982  |z (OCoLC)989061644 
037 |a CL0500000859  |b Safari Books Online 
050 4 |a QA76.73.J38 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Grigorev, Alexey,  |e author. 
245 1 0 |a Mastering Java for data science :  |b building data science applications in Java /  |c Alexey Grigorev. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (viewed May 15, 2017). 
520 |a Use Java to create a diverse range of Data Science applications and bring Data Science into production About This Book An overview of modern Data Science and Machine Learning libraries available in Java Coverage of a broad set of topics, going from the basics of Machine Learning to Deep Learning and Big Data frameworks. Easy-to-follow illustrations and the running example of building a search engine. Who This Book Is For This book is intended for software engineers who are comfortable with developing Java applications and are familiar with the basic concepts of data science. Additionally, it will also be useful for data scientists who do not yet know Java but want or need to learn it. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing the existing stack, this book is for you! What You Will Learn Get a solid understanding of the data processing toolbox available in Java Explore the data science ecosystem available in Java Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images Create your own search engine Get state-of-the-art performance with XGBoost Learn how to build deep neural networks with DeepLearning4j Build applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrie... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Java (Computer program language) 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Java (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Databases  |x Data Mining.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Java (Computer program language)  |2 fast  |0 (OCoLC)fst00982065 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781782174271/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31403937 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis35450243 
938 |a EBSCOhost  |b EBSC  |n 1587501 
994 |a 92  |b IZTAP