Cargando…

Introduction to TensorFlow-Slim : complex TensorFlow model building and training made easy /

"TensorFlow-Slim (TF-Slim) is a TensorFlow wrapper library that allows you to build and train complex TensorFlow models in an easy, intuitive way by eliminating the boilerplate code that plagues many deep learning algorithms. This course teaches you how to use TF-Slim and is intended for learne...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bertin, Marvin (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ii 4500
001 OR_ocn983730474
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 170422s2017 xx 103 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCO 
035 |a (OCoLC)983730474 
037 |a CL0500000851  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Bertin, Marvin,  |e speaker. 
245 1 0 |a Introduction to TensorFlow-Slim :  |b complex TensorFlow model building and training made easy /  |c with Marvin Bertin. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2017] 
300 |a 1 online resource (1 streaming video file (1 hr., 42 min., 25 sec.)) :  |b digital, sound, color 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Marvin Bertin. 
500 |a Title from title screen (viewed April 20, 2017). 
500 |a Date of publication from resource description page. 
520 |a "TensorFlow-Slim (TF-Slim) is a TensorFlow wrapper library that allows you to build and train complex TensorFlow models in an easy, intuitive way by eliminating the boilerplate code that plagues many deep learning algorithms. This course teaches you how to use TF-Slim and is intended for learners with some previous experience working with TensorFlow. To get the most out of this training, learners should be familiar with the core concepts of data science theory (train/test splits, overfitting and underfitting, bias-variance tradeoffs, etc.), and deep learning theory (backpropogation, weight parameter tensors, neural network layers, objective and loss functions, and optimization via stochastic descent)."--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491978399/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP