Cargando…

Python data analysis : data manipulation and complex data analysis with Python /

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Pytho...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fandango, Armando (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2017.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn983204704
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 170420s2017 enka ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OSU  |d IDEBK  |d TOH  |d OCLCF  |d TEFOD  |d OCLCQ  |d N$T  |d COO  |d UOK  |d CEF  |d KSU  |d DEBBG  |d UAB  |d UKAHL  |d ESU  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781787127920  |q (electronic bk.) 
020 |a 1787127923  |q (electronic bk.) 
020 |z 9781787127487 
029 1 |a GBVCP  |b 1004864310 
029 1 |a AU@  |b 000067024708 
035 |a (OCoLC)983204704 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Fandango, Armando,  |e author. 
245 1 0 |a Python data analysis :  |b data manipulation and complex data analysis with Python /  |c Armando Fandango. 
250 |a Second edition. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (v, 307 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed September 22, 2017) 
504 |a Includes bibliographical references and index. 
505 0 |a Getting started with Python libraries -- NumPy Arrays -- The Pandas Primer -- Statistics and Linear Algebra -- Retrieving, Processing, and Storing Data -- Data Visualization -- Singal Processing and Time Series -- Working with Databases -- Analyzing Textual Data and Social Media -- Predictive Analytics and Machine Learning -- Environments Outside the Python Ecosystem and Cloud Computing -- Performance Tuning, Profiling, and Concurrency 
520 3 |a Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Programming languages (Electronic computers) 
650 6 |a Python (Langage de programmation) 
650 7 |a COMPUTERS / Programming Languages / Python  |2 bisacsh 
650 7 |a Programming languages (Electronic computers)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781787127487/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32239346 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37298710 
938 |a EBSCOhost  |b EBSC  |n 1495814 
994 |a 92  |b IZTAP