Learning vector space models with SpaCy : build dense vector representations of text, and train them using Gensim /
"Information representation is a fundamental aspect of computational linguistics and learning from unstructured data. This course explores vector space models, how they're used to represent the meaning of words and documents, and how to create them using Python-based spaCy. You'll lea...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | Kramer, Aaron (Orador) |
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
O'Reilly Media,
[2017]
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Introduction to natural language processing with SpaCy : get started with the SpaCy Library, data model, and part of speech tagging /
Publicado: (2017) -
Dependency grammar and tagging with SpaCy : learn to represent a parse natural language using dependency grammar /
Publicado: (2017) -
Natural language processing with Python and spaCy : a practical introduction /
por: Vasiliev, Yuli
Publicado: (2020) -
Natural language text processing with Python : hands-on NLP in Python using NLTK, spaCy, gensim, and scikit-learn /
Publicado: (2017) -
Natural language processing recipes : unlocking text data with machine learning and deep learning using Python /
por: Kulkarni, Akshay, et al.
Publicado: (2019)