Cargando…

Learning vector space models with SpaCy : build dense vector representations of text, and train them using Gensim /

"Information representation is a fundamental aspect of computational linguistics and learning from unstructured data. This course explores vector space models, how they're used to represent the meaning of words and documents, and how to create them using Python-based spaCy. You'll lea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kramer, Aaron (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ii 4500
001 OR_ocn982197782
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 170412s2017 xx 033 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TOH  |d OCLCF  |d UAB  |d OCLCO 
035 |a (OCoLC)982197782 
037 |a CL0500000847  |b Safari Books Online 
050 4 |a QA76.9.N38 
049 |a UAMI 
100 1 |a Kramer, Aaron,  |e speaker. 
245 1 0 |a Learning vector space models with SpaCy :  |b build dense vector representations of text, and train them using Gensim /  |c with Aaron Kramer. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c [2017] 
300 |a 1 online resource (1 streaming video file (32 min., 32 sec.)) :  |b digital, sound, color 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Aaron Kramer. 
500 |a Title from title screen (viewed April 11, 2017). 
500 |a Date of publication from resource description page. 
520 |a "Information representation is a fundamental aspect of computational linguistics and learning from unstructured data. This course explores vector space models, how they're used to represent the meaning of words and documents, and how to create them using Python-based spaCy. You'll learn about several types of vector space models, how they relate to each other, and how to determine which model is best for natural language processing applications like information retrieval, indexing, and relevancy rankings. The course begins with a look at various encodings of sparse document-term matrices, moves on to dense vector representations that need to be learned, touches on latent semantic analysis, and finishes with an exploration of representation learning from neural network models with a focus on word2vec and Gensim. To get the most out of this course, learners should have intermediate level Python skills."--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Natural language processing (Computer science) 
650 0 |a Python (Computer program language) 
650 2 |a Natural Language Processing 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Python (Langage de programmation) 
650 7 |a Natural language processing (Computer science)  |2 fast  |0 (OCoLC)fst01034365 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491986042/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP