Cargando…

Formal languages and automata theory /

Formal Languages and Automata Theory deals with the mathematical abstraction model of computation and its relation to formal languages. This book is intended to expose students to the theoretical development of computer science. It also provides conceptual tools that practitioners use in computer en...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sunitha, K. V. N. (Autor), Kalyani, N. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chennai : Pearson, [2015]
Colección:Always learning.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover; Copyright; Contents; Preface; Acknowledgements; List of Important Symbols; List of Important Abbreviations; About the Authors; 1. Mathematical Preliminaries and Formal Languages; 1.1 Set Theory; 1.1.1 Describing a Set; 1.1.2 Empty Set; 1.1.3 Identity and Cardinality; 1.1.4 Subset; 1.1.5 Power Sets; 1.1.6 Operations on Sets: Union, Intersection; 1.1.7 Set Theoretic Equalities; 1.1.8 Sequence Versus Set; 1.1.9 Ordered Pairs; 1.1.10 Cartesian Product; 1.2 Relations; 1.2.1 Binary Relation; 1.2.2 Domain and Range of Relation; 1.2.3 Operations on Relations; 1.2.4 Properties of Relations.
  • 1.3 Functions1.3.1 Definitions; 1.3.2 Types of Functions; 1.4 Alphabet, String and Language; 1.4.1 Operations on Language; 1.4.2 Grammars; 1.4.3 Types of Grammarsâ#x80;#x93;Chomsky Hierarchy; 1.5 Graphs and Trees; 1.5.1 Directed Graph; 1.5.2 Undirected Graph; 1.5.3 Trees; 1.6 Theorem Proving; 1.6.1 Proof by Induction; 1.6.2 Proof by Contradiction; 1.6.3 Proof by Example; Summary; Short Answers; Fill in the Blanks; Objective Question Bank; Exercises; 2. Finite Automata; 2.1 Finite-state Machine; 2.1.1 Finite-Automaton Model; 2.1.2 Properties of Transition Function â#x80;#x98;câ#x80;#x99;; 2.1.3 Transition Diagram.
  • 2.1.4 Transition Table2.2 Language Acceptance; 2.3 Two Types of Finite Automata; 2.3.1 Deterministic Finite Automata (DFA); 2.3.2 Non-deterministic Finite Automaton (NFA); 2.3.3 Acceptance of NFA; 2.4 Equivalence of DFAs and NFAs; 2.5 Converting NFA (MN) to DFA (MD)â#x80;#x94;Subset Construction; 2.6 NFA with Epsilon-(e) Transitions; 2.6.1 Epsilon Closure (e-closure); 2.6.2 Eliminating e-Transitions; 2.6.3 Converting NFA with e-Transition to NFA without e-Transition; 2.6.4 Converting NFA with e-Transition to DFA; 2.7 Comparison Method for Testing Equivalence of Two FAs.
  • 2.8 Reduction of Number of States in FA2.8.1 Indistinguishable States; 2.8.2 Equivalent Classes; 2.8.3 Minimization of DFA; 2.8.4 Minimization of DFA Using Myhill Nerode Theorem; 2.9 Finite Automata with Output; 2.9.1 Moore Machine; 2.9.2 Mealy Machine; 2.9.3 Equivalence Between Moore and Mealy Machines; 2.9.4 Interconversions Between Machines; 2.10 Applications of Finite Automata with Output; 2.10.1 The Full-adder; 2.10.2 The String Sequence Detector; Solved Problems; Summary; Short Answers; Fill in the Blanks; Objective Question Bank; Exercises; 3. Regular Languages and Regular Grammars.
  • 3.1 Regular Expressions3.2 Regular Sets; 3.3 Identity Rules for Regular Expressions; 3.4 Algebraic Laws for Regular Expressions; 3.5 Equivalence of Finite Automata with Regular Expressions; 3.6 Constructing Regular Expression for Given DFA; 3.6.1 Ardenâ#x80;#x99;s Theorem; 3.6.2 Ardenâ#x80;#x99;s Theorem in Construction of RE; 3.6.3 Construction of RE Using Generalized NFA; 3.7 Pumping Lemma of Regular Expressions; 3.7.1 Formal Definition of the Pumping Lemma; 3.8 Regular Grammar; 3.8.1 Equivalence of Regular Grammar and Finite Automata; 3.8.2 Converting Finite Automaton to Regular Grammar.