Cargando…

TensorFlow machine learning cookbook : explore machine learning concepts using the latest numerical computing library, TensorFlow, with the help of this comprehenisive cookbook /

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on trai...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McClure, Nick (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn974929461
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
007 cr cnu---unuuu
008 170309s2017 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d STF  |d IDEBK  |d OCLCQ  |d ALAUL  |d CEF  |d KSU  |d DEBBG  |d UAB  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9781786462169  |q (electronic) 
020 |a 9781786466303 
020 |a 1786466309 
029 1 |a GBVCP  |b 897169638 
035 |a (OCoLC)974929461 
037 |a CL0500000837  |b Safari Books Online 
050 4 |a Q325.5  |b .M335 2017eb 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a McClure, Nick,  |e author. 
245 1 0 |a TensorFlow machine learning cookbook :  |b explore machine learning concepts using the latest numerical computing library, TensorFlow, with the help of this comprehenisive cookbook /  |c Nick McClure. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (370 pages):  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based on online resource; title from cover (Safari, viewed March 7, 2017). 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Getting Started with TensorFlow; Introduction; How TensorFlow Works; Declaring Tensors; Using Placeholders and Variables; Working with Matrices; Declaring Operations; Implementing Activation Functions; Working with Data Sources; Additional Resources; Chapter 2: The TensorFlow Way; Introduction; Operations in a Computational Graph; Layering Nested Operations; Working with Multiple Layers; Implementing Loss Functions; Implementing Back Propagation. Working with Batch and Stochastic TrainingCombining Everything Together; Evaluating Models; Chapter 3: Linear Regression; Introduction; Using the Matrix Inverse Method; Implementing a Decomposition Method; Learning The TensorFlow Way of Linear Regression; Understanding Loss Functions in Linear Regression; Implementing Deming regression; Implementing Lasso and Ridge Regression; Implementing Elastic Net Regression; Implementing Logistic Regression; Chapter 4: Support Vector Machines; Introduction; Working with a Linear SVM; Reduction to Linear Regression; Working with Kernels in TensorFlow -- Implementing a Non-Linear SVMImplementing a Multi-Class SVM; Chapter 5: Nearest Neighbor Methods; Introduction; Working with Nearest Neighbors; Working with Text-Based Distances; Computing with Mixed Distance Functions; Using an Address Matching Example; Using Nearest Neighbors for Image Recognition; Chapter 6: Neural Networks; Introduction; Implementing Operational Gates; Working with Gates and Activation Functions; Implementing a One-Layer Neural Network; Implementing Different Layers; Using a Multilayer Neural Network; Improving the Predictions of Linear Models -- Stacking multiple LSTM LayersCreating Sequence-to-Sequence Models; Training a Siamese Similarity Measure; Chapter 10: Taking TensorFlow to Production; Introduction; Implementing unit tests; Using Multiple Executors; Parallelizing TensorFlow; Taking TensorFlow to Production; Productionalizing TensorFlow -- An Example; Chapter 11: More with TensorFlow; Introduction; Visualizing graphs in Tensorboard; There's more ... ; Working with a Genetic Algorithm; Clustering Using K-Means; Solving a System of ODEs 
520 |a TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning - each using Google's machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781786462169/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis35312900 
994 |a 92  |b IZTAP