Cargando…

Human recognition in unconstrained environments : using computer vision, pattern recognition and machine learning methods for biometrics /

Providing a unique picture of the complete in-the-wild biometric recognition processing chain, this book covers everything from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. --

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: De Marsico, Maria (Editor ), Nappi, Michele (Editor ), Proença, Hugo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, an imprint of Elsevier, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Front Cover
  • Human Recognition in Unconstrained Environments
  • Copyright
  • Contents
  • Contributors
  • Editor Biographies
  • Foreword
  • 1 Unconstrained Data Acquisition Frameworks and Protocols
  • 1.1 Introduction
  • 1.2 Unconstrained Biometric Data Acquisition Modalities
  • 1.3 Typical Challenges
  • 1.3.1 Optical Constraints
  • 1.3.2 Non-comprehensive View of the Scene
  • 1.3.3 Out-of-Focus
  • 1.3.4 Calibration of Multi-camera Systems
  • 1.4 Unconstrained Biometric Data Acquisition Systems
  • 1.4.1 Low Resolutions Systems
  • 1.4.2 PTZ-Based Systems
  • 1.4.3 Face
  • 1.5 Conclusions
  • References
  • 2 Face Recognition Using an Outdoor Camera Network
  • 2.1 Introduction
  • 2.2 Taxonomy of Camera Networks
  • 2.2.1 Static Camera Networks
  • 2.2.2 Active Camera Networks
  • 2.2.3 Characteristics of Camera Networks
  • 2.3 Face Association in Camera Networks
  • 2.3.1 Face-to-Face Association
  • 2.3.2 Face-to-Person Association
  • 2.4 Face Recognition in Outdoor Environment
  • 2.4.1 Robust Descriptors for Face Recognition
  • 2.4.2 Video-Based Face Recognition
  • 2.4.3 Multi-view and 3D Face Recognition
  • 2.4.4 Face Recognition with Context Information
  • 2.4.5 Incremental Learning of Face Recognition
  • 2.5 Outdoor Camera Systems
  • 2.5.1 Static Camera Approach
  • 2.5.2 Single PTZ Camera Approach
  • 2.5.3 Master and Slave Camera Approach
  • 2.5.4 Distributed Active Camera Networks
  • 2.6 Remaining Challenges and Emerging Techniques
  • 2.7 Conclusions
  • References
  • 3 Real Time 3D Face-Ear Recognition on Mobile Devices: New Scenarios for 3D Biometrics "in-the-Wild
  • 3.1 Introduction
  • 3.2 3D Capture of Face and Ear: CURRENT Methods and Suitable Options
  • 3.2.1 Laser Scanners
  • 3.2.2 Structured Light Scanners
  • 3.2.3 Stereophotogrammetry
  • 3.3 Mobile Devices for Ubiquitous Face-Ear Recognition.
  • 3.4 The Next Step: Mobile Devices for 3D Sensing Aiming at 3D Biometric Applications
  • 3.5 Conclusions and Future Scenarios
  • References
  • 4 A Multiscale Sequential Fusion Approach for Handling Pupil Dilation in Iris Recognition
  • 4.1 Introduction
  • 4.1.1 Pupil Dilation
  • 4.1.2 Layout
  • 4.2 Previous Work
  • 4.2.1 Pupil Dilation
  • 4.2.2 Bit Matching
  • 4.3 WVU Pupil Light Re ex (PLR) Dataset
  • 4.4 Impact of Pupil Dilation
  • 4.5 Proposed Method
  • 4.5.1 IrisCode Generation
  • 4.5.2 Typical IrisCode Matcher
  • 4.5.3 Multi- lter Matching Patterns
  • 4.5.4 Proposed IrisCode Matcher
  • 4.6 Experimental Results
  • 4.7 Conclusions and Future Work
  • References
  • 5 Iris Recognition on Mobile Devices Using Near-Infrared Images
  • 5.1 Introduction
  • 5.2 Preprocessing
  • 5.3 Feature Analysis
  • 5.4 Multimodal Biometrics
  • 5.5 Conclusions
  • References
  • 6 Fingerphoto Authentication Using Smartphone Camera Captured Under Varying Environmental Conditions
  • 6.1 Introduction
  • 6.2 Literature Survey
  • 6.3 IIITD SmartPhone Fingerphoto Database v1
  • 6.3.1 Set 1: Background Variation
  • 6.3.2 Set 2: Illumination Variation
  • 6.3.3 Set 3: Live-Scan Fingerprints
  • 6.4 Proposed Fingerphoto Matching Algorithm
  • 6.4.1 Fingerphoto Segmentation
  • 6.4.2 Fingerphoto Enhancement (Enh#1)
  • 6.4.3 LBP Based Enhancement (Enh#2)
  • 6.4.4 Scattering Network Based Feature Representation
  • 6.4.5 Matching Techniques
  • 6.5 Experimental Results
  • 6.5.1 Performance of the Proposed Matching Pipeline
  • 6.5.2 Comparison of Matching Algorithms
  • 6.5.3 Comparison of Distance Metrics
  • 6.5.4 Effect of Enhancement
  • 6.6 Conclusion
  • 6.7 Future Work
  • Acknowledgements
  • References
  • 7 Soft Biometric Attributes in the Wild: Case Study on Gender Classi cation
  • 7.1 Introduction
  • 7.2 Biometrics in the Wild
  • 7.3 Gender Classi cation in the Wild
  • 7.3.1 Datasets.
  • 7.3.2 Proposals Summary
  • 7.3.3 Discussion
  • 7.4 Conclusions
  • References
  • 8 Gait Recognition: The Wearable Solution
  • 8.1 Machine Vision Approach
  • 8.2 Floor Sensor Approach
  • 8.3 Wearable Sensor Approach
  • 8.3.1 The Accelerometer Sensor
  • 8.4 Datasets Available for Experiments
  • 8.5 An Example of a Complete System for Gait Recognition
  • 8.6 Conclusions
  • References
  • 9 Biometric Authentication to Access Controlled Areas Through Eye Tracking
  • 9.1 Introduction
  • 9.2 ATM-Like Solutions
  • 9.3 Methods Based on Fixation and Scanpath Analysis
  • 9.4 Methods Based on Eye/Gaze Velocity
  • 9.5 Methods Based on Pupil Size
  • 9.6 Methods Based on Oculomotor Features
  • 9.7 Methods Based on Head Orientation
  • 9.8 Conclusions
  • References
  • 10 Noncooperative Biometrics: Cross-Jurisdictional Concerns
  • 10.1 Introduction
  • 10.2 Biometrics for Implementing Biometric Surveillance
  • 10.3 Reaction to Public Opinion
  • 10.3.1 Geopolitical Context
  • 10.3.2 Technological Skills
  • 10.3.3 Proportionality
  • 10.3.4 A Particular Operational Framework
  • 10.4 The Early Days
  • 10.4.1 Commercial Context
  • 10.4.2 Historical Context
  • 10.4.3 Social Context, the Newham and Ybor City Experiments
  • 10.5 An Interesting Clue (2007)
  • 10.6 Biometric Surveillance Today
  • 10.6.1 Increased Perception of Insecurity
  • 10.6.2 Getting Used to the Erosion of Privacy
  • 10.6.3 Increase of Mobility
  • 10.7 Conclusions
  • References
  • Index
  • Back Cover.