Cargando…

Human recognition in unconstrained environments : using computer vision, pattern recognition and machine learning methods for biometrics /

Providing a unique picture of the complete in-the-wild biometric recognition processing chain, this book covers everything from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. --

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: De Marsico, Maria (Editor ), Nappi, Michele (Editor ), Proença, Hugo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, an imprint of Elsevier, [2017]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn968211484
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 170112t20172017enk ob 001 0 eng d
010 |a  2016960812 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d EBLCP  |d N$T  |d COO  |d OCLCF  |d YDX  |d UMI  |d UIU  |d MERER  |d VT2  |d OCLCQ  |d VGM  |d LIV  |d K6U  |d UAB  |d OCLCQ  |d STF  |d UPM  |d OTZ  |d ESU  |d D6H  |d COS  |d COF  |d NJR  |d VVB  |d U3W  |d FMG  |d OCLCQ  |d DEBBG  |d CEF  |d KSU  |d TXM  |d OCLCO  |d AU@  |d OCLCQ  |d LQU  |d OCLCQ  |d UKMGB  |d S2H  |d OCLCA  |d LVT  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ 
015 |a GBB711216  |2 bnb 
016 7 |a 018189271  |2 Uk 
019 |a 971629434  |a 1105182065  |a 1105570007  |a 1152990347  |a 1229603360 
020 |a 9780081007129  |q (electronic bk.) 
020 |a 0081007124  |q (electronic bk.) 
020 |a 0081007051 
020 |a 9780081007051 
020 |z 9780081007051 
029 1 |a CHVBK  |b 486376311 
029 1 |a CHDSB  |b 006710655 
029 1 |a GBVCP  |b 897159071 
029 1 |a AU@  |b 000060819817 
029 1 |a UKMGB  |b 018189271 
029 1 |a AU@  |b 000067075626 
035 |a (OCoLC)968211484  |z (OCoLC)971629434  |z (OCoLC)1105182065  |z (OCoLC)1105570007  |z (OCoLC)1152990347  |z (OCoLC)1229603360 
037 |a CL0500000829  |b Safari Books Online 
050 4 |a TK7882.B56 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
049 |a UAMI 
245 0 0 |a Human recognition in unconstrained environments :  |b using computer vision, pattern recognition and machine learning methods for biometrics /  |c edited by Maria De Marsico, Michele Nappi, Hugo Proença. 
264 1 |a London :  |b Academic Press, an imprint of Elsevier,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed January 25, 2017). 
520 |a Providing a unique picture of the complete in-the-wild biometric recognition processing chain, this book covers everything from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. --  |c Edited summary from book. 
505 0 |a Front Cover -- Human Recognition in Unconstrained Environments -- Copyright -- Contents -- Contributors -- Editor Biographies -- Foreword -- 1 Unconstrained Data Acquisition Frameworks and Protocols -- 1.1 Introduction -- 1.2 Unconstrained Biometric Data Acquisition Modalities -- 1.3 Typical Challenges -- 1.3.1 Optical Constraints -- 1.3.2 Non-comprehensive View of the Scene -- 1.3.3 Out-of-Focus -- 1.3.4 Calibration of Multi-camera Systems -- 1.4 Unconstrained Biometric Data Acquisition Systems -- 1.4.1 Low Resolutions Systems -- 1.4.2 PTZ-Based Systems -- 1.4.3 Face -- 1.5 Conclusions -- References -- 2 Face Recognition Using an Outdoor Camera Network -- 2.1 Introduction -- 2.2 Taxonomy of Camera Networks -- 2.2.1 Static Camera Networks -- 2.2.2 Active Camera Networks -- 2.2.3 Characteristics of Camera Networks -- 2.3 Face Association in Camera Networks -- 2.3.1 Face-to-Face Association -- 2.3.2 Face-to-Person Association -- 2.4 Face Recognition in Outdoor Environment -- 2.4.1 Robust Descriptors for Face Recognition -- 2.4.2 Video-Based Face Recognition -- 2.4.3 Multi-view and 3D Face Recognition -- 2.4.4 Face Recognition with Context Information -- 2.4.5 Incremental Learning of Face Recognition -- 2.5 Outdoor Camera Systems -- 2.5.1 Static Camera Approach -- 2.5.2 Single PTZ Camera Approach -- 2.5.3 Master and Slave Camera Approach -- 2.5.4 Distributed Active Camera Networks -- 2.6 Remaining Challenges and Emerging Techniques -- 2.7 Conclusions -- References -- 3 Real Time 3D Face-Ear Recognition on Mobile Devices: New Scenarios for 3D Biometrics "in-the-Wild -- 3.1 Introduction -- 3.2 3D Capture of Face and Ear: CURRENT Methods and Suitable Options -- 3.2.1 Laser Scanners -- 3.2.2 Structured Light Scanners -- 3.2.3 Stereophotogrammetry -- 3.3 Mobile Devices for Ubiquitous Face-Ear Recognition. 
505 8 |a 3.4 The Next Step: Mobile Devices for 3D Sensing Aiming at 3D Biometric Applications -- 3.5 Conclusions and Future Scenarios -- References -- 4 A Multiscale Sequential Fusion Approach for Handling Pupil Dilation in Iris Recognition -- 4.1 Introduction -- 4.1.1 Pupil Dilation -- 4.1.2 Layout -- 4.2 Previous Work -- 4.2.1 Pupil Dilation -- 4.2.2 Bit Matching -- 4.3 WVU Pupil Light Re ex (PLR) Dataset -- 4.4 Impact of Pupil Dilation -- 4.5 Proposed Method -- 4.5.1 IrisCode Generation -- 4.5.2 Typical IrisCode Matcher -- 4.5.3 Multi- lter Matching Patterns -- 4.5.4 Proposed IrisCode Matcher -- 4.6 Experimental Results -- 4.7 Conclusions and Future Work -- References -- 5 Iris Recognition on Mobile Devices Using Near-Infrared Images -- 5.1 Introduction -- 5.2 Preprocessing -- 5.3 Feature Analysis -- 5.4 Multimodal Biometrics -- 5.5 Conclusions -- References -- 6 Fingerphoto Authentication Using Smartphone Camera Captured Under Varying Environmental Conditions -- 6.1 Introduction -- 6.2 Literature Survey -- 6.3 IIITD SmartPhone Fingerphoto Database v1 -- 6.3.1 Set 1: Background Variation -- 6.3.2 Set 2: Illumination Variation -- 6.3.3 Set 3: Live-Scan Fingerprints -- 6.4 Proposed Fingerphoto Matching Algorithm -- 6.4.1 Fingerphoto Segmentation -- 6.4.2 Fingerphoto Enhancement (Enh#1) -- 6.4.3 LBP Based Enhancement (Enh#2) -- 6.4.4 Scattering Network Based Feature Representation -- 6.4.5 Matching Techniques -- 6.5 Experimental Results -- 6.5.1 Performance of the Proposed Matching Pipeline -- 6.5.2 Comparison of Matching Algorithms -- 6.5.3 Comparison of Distance Metrics -- 6.5.4 Effect of Enhancement -- 6.6 Conclusion -- 6.7 Future Work -- Acknowledgements -- References -- 7 Soft Biometric Attributes in the Wild: Case Study on Gender Classi cation -- 7.1 Introduction -- 7.2 Biometrics in the Wild -- 7.3 Gender Classi cation in the Wild -- 7.3.1 Datasets. 
505 8 |a 7.3.2 Proposals Summary -- 7.3.3 Discussion -- 7.4 Conclusions -- References -- 8 Gait Recognition: The Wearable Solution -- 8.1 Machine Vision Approach -- 8.2 Floor Sensor Approach -- 8.3 Wearable Sensor Approach -- 8.3.1 The Accelerometer Sensor -- 8.4 Datasets Available for Experiments -- 8.5 An Example of a Complete System for Gait Recognition -- 8.6 Conclusions -- References -- 9 Biometric Authentication to Access Controlled Areas Through Eye Tracking -- 9.1 Introduction -- 9.2 ATM-Like Solutions -- 9.3 Methods Based on Fixation and Scanpath Analysis -- 9.4 Methods Based on Eye/Gaze Velocity -- 9.5 Methods Based on Pupil Size -- 9.6 Methods Based on Oculomotor Features -- 9.7 Methods Based on Head Orientation -- 9.8 Conclusions -- References -- 10 Noncooperative Biometrics: Cross-Jurisdictional Concerns -- 10.1 Introduction -- 10.2 Biometrics for Implementing Biometric Surveillance -- 10.3 Reaction to Public Opinion -- 10.3.1 Geopolitical Context -- 10.3.2 Technological Skills -- 10.3.3 Proportionality -- 10.3.4 A Particular Operational Framework -- 10.4 The Early Days -- 10.4.1 Commercial Context -- 10.4.2 Historical Context -- 10.4.3 Social Context, the Newham and Ybor City Experiments -- 10.5 An Interesting Clue (2007) -- 10.6 Biometric Surveillance Today -- 10.6.1 Increased Perception of Insecurity -- 10.6.2 Getting Used to the Erosion of Privacy -- 10.6.3 Increase of Mobility -- 10.7 Conclusions -- References -- Index -- Back Cover. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Biometric identification. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer vision. 
650 0 |a Machine learning. 
650 2 |a Pattern Recognition, Automated 
650 6 |a Identification biométrique. 
650 6 |a Reconnaissance des formes (Informatique) 
650 6 |a Vision par ordinateur. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Biometric identification.  |2 fast  |0 (OCoLC)fst00832607 
650 7 |a Computer vision.  |2 fast  |0 (OCoLC)fst00872687 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Pattern recognition systems.  |2 fast  |0 (OCoLC)fst01055266 
700 1 |a De Marsico, Maria,  |e editor. 
700 1 |a Nappi, Michele,  |e editor. 
700 1 |a Proença, Hugo,  |e editor. 
776 0 8 |i Print version:  |t Human recognition in unconstrained environments : using computer vision, pattern recognition and machine learning methods for biometrics.  |d Amsterdam, [Netherlands] : Elsevier, ©2017  |h xvi, 231 pages  |z 9780081007051 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780081007129/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37357433 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4785180 
938 |a EBSCOhost  |b EBSC  |n 1144731 
938 |a YBP Library Services  |b YANK  |n 13355786 
994 |a 92  |b IZTAP