|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
OR_ocn968211484 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
170112t20172017enk ob 001 0 eng d |
010 |
|
|
|a 2016960812
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d EBLCP
|d N$T
|d COO
|d OCLCF
|d YDX
|d UMI
|d UIU
|d MERER
|d VT2
|d OCLCQ
|d VGM
|d LIV
|d K6U
|d UAB
|d OCLCQ
|d STF
|d UPM
|d OTZ
|d ESU
|d D6H
|d COS
|d COF
|d NJR
|d VVB
|d U3W
|d FMG
|d OCLCQ
|d DEBBG
|d CEF
|d KSU
|d TXM
|d OCLCO
|d AU@
|d OCLCQ
|d LQU
|d OCLCQ
|d UKMGB
|d S2H
|d OCLCA
|d LVT
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|
015 |
|
|
|a GBB711216
|2 bnb
|
016 |
7 |
|
|a 018189271
|2 Uk
|
019 |
|
|
|a 971629434
|a 1105182065
|a 1105570007
|a 1152990347
|a 1229603360
|
020 |
|
|
|a 9780081007129
|q (electronic bk.)
|
020 |
|
|
|a 0081007124
|q (electronic bk.)
|
020 |
|
|
|a 0081007051
|
020 |
|
|
|a 9780081007051
|
020 |
|
|
|z 9780081007051
|
029 |
1 |
|
|a CHVBK
|b 486376311
|
029 |
1 |
|
|a CHDSB
|b 006710655
|
029 |
1 |
|
|a GBVCP
|b 897159071
|
029 |
1 |
|
|a AU@
|b 000060819817
|
029 |
1 |
|
|a UKMGB
|b 018189271
|
029 |
1 |
|
|a AU@
|b 000067075626
|
035 |
|
|
|a (OCoLC)968211484
|z (OCoLC)971629434
|z (OCoLC)1105182065
|z (OCoLC)1105570007
|z (OCoLC)1152990347
|z (OCoLC)1229603360
|
037 |
|
|
|a CL0500000829
|b Safari Books Online
|
050 |
|
4 |
|a TK7882.B56
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.4
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Human recognition in unconstrained environments :
|b using computer vision, pattern recognition and machine learning methods for biometrics /
|c edited by Maria De Marsico, Michele Nappi, Hugo Proença.
|
264 |
|
1 |
|a London :
|b Academic Press, an imprint of Elsevier,
|c [2017]
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed January 25, 2017).
|
520 |
|
|
|a Providing a unique picture of the complete in-the-wild biometric recognition processing chain, this book covers everything from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. --
|c Edited summary from book.
|
505 |
0 |
|
|a Front Cover -- Human Recognition in Unconstrained Environments -- Copyright -- Contents -- Contributors -- Editor Biographies -- Foreword -- 1 Unconstrained Data Acquisition Frameworks and Protocols -- 1.1 Introduction -- 1.2 Unconstrained Biometric Data Acquisition Modalities -- 1.3 Typical Challenges -- 1.3.1 Optical Constraints -- 1.3.2 Non-comprehensive View of the Scene -- 1.3.3 Out-of-Focus -- 1.3.4 Calibration of Multi-camera Systems -- 1.4 Unconstrained Biometric Data Acquisition Systems -- 1.4.1 Low Resolutions Systems -- 1.4.2 PTZ-Based Systems -- 1.4.3 Face -- 1.5 Conclusions -- References -- 2 Face Recognition Using an Outdoor Camera Network -- 2.1 Introduction -- 2.2 Taxonomy of Camera Networks -- 2.2.1 Static Camera Networks -- 2.2.2 Active Camera Networks -- 2.2.3 Characteristics of Camera Networks -- 2.3 Face Association in Camera Networks -- 2.3.1 Face-to-Face Association -- 2.3.2 Face-to-Person Association -- 2.4 Face Recognition in Outdoor Environment -- 2.4.1 Robust Descriptors for Face Recognition -- 2.4.2 Video-Based Face Recognition -- 2.4.3 Multi-view and 3D Face Recognition -- 2.4.4 Face Recognition with Context Information -- 2.4.5 Incremental Learning of Face Recognition -- 2.5 Outdoor Camera Systems -- 2.5.1 Static Camera Approach -- 2.5.2 Single PTZ Camera Approach -- 2.5.3 Master and Slave Camera Approach -- 2.5.4 Distributed Active Camera Networks -- 2.6 Remaining Challenges and Emerging Techniques -- 2.7 Conclusions -- References -- 3 Real Time 3D Face-Ear Recognition on Mobile Devices: New Scenarios for 3D Biometrics "in-the-Wild -- 3.1 Introduction -- 3.2 3D Capture of Face and Ear: CURRENT Methods and Suitable Options -- 3.2.1 Laser Scanners -- 3.2.2 Structured Light Scanners -- 3.2.3 Stereophotogrammetry -- 3.3 Mobile Devices for Ubiquitous Face-Ear Recognition.
|
505 |
8 |
|
|a 3.4 The Next Step: Mobile Devices for 3D Sensing Aiming at 3D Biometric Applications -- 3.5 Conclusions and Future Scenarios -- References -- 4 A Multiscale Sequential Fusion Approach for Handling Pupil Dilation in Iris Recognition -- 4.1 Introduction -- 4.1.1 Pupil Dilation -- 4.1.2 Layout -- 4.2 Previous Work -- 4.2.1 Pupil Dilation -- 4.2.2 Bit Matching -- 4.3 WVU Pupil Light Re ex (PLR) Dataset -- 4.4 Impact of Pupil Dilation -- 4.5 Proposed Method -- 4.5.1 IrisCode Generation -- 4.5.2 Typical IrisCode Matcher -- 4.5.3 Multi- lter Matching Patterns -- 4.5.4 Proposed IrisCode Matcher -- 4.6 Experimental Results -- 4.7 Conclusions and Future Work -- References -- 5 Iris Recognition on Mobile Devices Using Near-Infrared Images -- 5.1 Introduction -- 5.2 Preprocessing -- 5.3 Feature Analysis -- 5.4 Multimodal Biometrics -- 5.5 Conclusions -- References -- 6 Fingerphoto Authentication Using Smartphone Camera Captured Under Varying Environmental Conditions -- 6.1 Introduction -- 6.2 Literature Survey -- 6.3 IIITD SmartPhone Fingerphoto Database v1 -- 6.3.1 Set 1: Background Variation -- 6.3.2 Set 2: Illumination Variation -- 6.3.3 Set 3: Live-Scan Fingerprints -- 6.4 Proposed Fingerphoto Matching Algorithm -- 6.4.1 Fingerphoto Segmentation -- 6.4.2 Fingerphoto Enhancement (Enh#1) -- 6.4.3 LBP Based Enhancement (Enh#2) -- 6.4.4 Scattering Network Based Feature Representation -- 6.4.5 Matching Techniques -- 6.5 Experimental Results -- 6.5.1 Performance of the Proposed Matching Pipeline -- 6.5.2 Comparison of Matching Algorithms -- 6.5.3 Comparison of Distance Metrics -- 6.5.4 Effect of Enhancement -- 6.6 Conclusion -- 6.7 Future Work -- Acknowledgements -- References -- 7 Soft Biometric Attributes in the Wild: Case Study on Gender Classi cation -- 7.1 Introduction -- 7.2 Biometrics in the Wild -- 7.3 Gender Classi cation in the Wild -- 7.3.1 Datasets.
|
505 |
8 |
|
|a 7.3.2 Proposals Summary -- 7.3.3 Discussion -- 7.4 Conclusions -- References -- 8 Gait Recognition: The Wearable Solution -- 8.1 Machine Vision Approach -- 8.2 Floor Sensor Approach -- 8.3 Wearable Sensor Approach -- 8.3.1 The Accelerometer Sensor -- 8.4 Datasets Available for Experiments -- 8.5 An Example of a Complete System for Gait Recognition -- 8.6 Conclusions -- References -- 9 Biometric Authentication to Access Controlled Areas Through Eye Tracking -- 9.1 Introduction -- 9.2 ATM-Like Solutions -- 9.3 Methods Based on Fixation and Scanpath Analysis -- 9.4 Methods Based on Eye/Gaze Velocity -- 9.5 Methods Based on Pupil Size -- 9.6 Methods Based on Oculomotor Features -- 9.7 Methods Based on Head Orientation -- 9.8 Conclusions -- References -- 10 Noncooperative Biometrics: Cross-Jurisdictional Concerns -- 10.1 Introduction -- 10.2 Biometrics for Implementing Biometric Surveillance -- 10.3 Reaction to Public Opinion -- 10.3.1 Geopolitical Context -- 10.3.2 Technological Skills -- 10.3.3 Proportionality -- 10.3.4 A Particular Operational Framework -- 10.4 The Early Days -- 10.4.1 Commercial Context -- 10.4.2 Historical Context -- 10.4.3 Social Context, the Newham and Ybor City Experiments -- 10.5 An Interesting Clue (2007) -- 10.6 Biometric Surveillance Today -- 10.6.1 Increased Perception of Insecurity -- 10.6.2 Getting Used to the Erosion of Privacy -- 10.6.3 Increase of Mobility -- 10.7 Conclusions -- References -- Index -- Back Cover.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Biometric identification.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
2 |
|a Pattern Recognition, Automated
|
650 |
|
6 |
|a Identification biométrique.
|
650 |
|
6 |
|a Reconnaissance des formes (Informatique)
|
650 |
|
6 |
|a Vision par ordinateur.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Biometric identification.
|2 fast
|0 (OCoLC)fst00832607
|
650 |
|
7 |
|a Computer vision.
|2 fast
|0 (OCoLC)fst00872687
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Pattern recognition systems.
|2 fast
|0 (OCoLC)fst01055266
|
700 |
1 |
|
|a De Marsico, Maria,
|e editor.
|
700 |
1 |
|
|a Nappi, Michele,
|e editor.
|
700 |
1 |
|
|a Proença, Hugo,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Human recognition in unconstrained environments : using computer vision, pattern recognition and machine learning methods for biometrics.
|d Amsterdam, [Netherlands] : Elsevier, ©2017
|h xvi, 231 pages
|z 9780081007051
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9780081007129/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis37357433
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4785180
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1144731
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13355786
|
994 |
|
|
|a 92
|b IZTAP
|