Cargando…

Principles of data science : learn the techniques and math you need to start making sense of your data /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ozdemir, Sinan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt, 2016.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn967096521
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 161223s2016 enka o 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d NLE  |d N$T  |d UMI  |d OCLCF  |d NAM  |d REB  |d YDX  |d IDEBK  |d OCLCQ  |d CEF  |d KSU  |d INT  |d DEBBG  |d OCLCQ  |d LVT  |d UAB  |d OL$  |d OCLCO  |d ESU  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 969172514  |a 987767872  |a 1059316923 
020 |a 9781785888922  |q (electronic bk.) 
020 |a 1785888927  |q (electronic bk.) 
020 |z 9781785887918 
020 |z 1785887912 
029 1 |a AU@  |b 000066233023 
029 1 |a GBVCP  |b 897169441 
035 |a (OCoLC)967096521  |z (OCoLC)969172514  |z (OCoLC)987767872  |z (OCoLC)1059316923 
037 |a 979771  |b MIL 
050 4 |a QA76.9.D3 
072 7 |a COM  |x 021000  |2 bisacsh 
082 0 4 |a 005.7565  |2 23 
049 |a UAMI 
100 1 |a Ozdemir, Sinan,  |e author. 
245 1 0 |a Principles of data science :  |b learn the techniques and math you need to start making sense of your data /  |c Sinan Ozdemir. 
264 1 |a Birmingham :  |b Packt,  |c 2016. 
300 |a 1 online resource (xii, 369 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed January 18, 2017) 
500 |a Includes index. 
520 8 |a Annotation  |b Learn the techniques and math you need to start making sense of your dataAbout This Book Enhance your knowledge of coding with data science theory for practical insight into data science and analysis More than just a math class, learn how to perform real-world data science tasks with R and Python Create actionable insights and transform raw data into tangible valueWho This Book Is ForYou should be fairly well acquainted with basic algebra and should feel comfortable reading snippets of R/Python as well as pseudo code. You should have the urge to learn and apply the techniques put forth in this book on either your own data sets or those provided to you. If you have the basic math skills but want to apply them in data science or you have good programming skills but lack math, then this book is for you. What You Will Learn Get to know the five most important steps of data science Use your data intelligently and learn how to handle it with care Bridge the gap between mathematics and programming Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results Build and evaluate baseline machine learning models Explore the most effective metrics to determine the success of your machine learning models Create data visualizations that communicate actionable insights Read and apply machine learning concepts to your problems and make actual predictionsIn DetailNeed to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about askingand answeringcomplex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means. Style and approachThis is an easy-to-understand and accessible tutorial. It is a step-by-step guide with use cases, examples, and illustrations to get you well-versed with the concepts of data science. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts later on and will help you implement these techniques in the real world. 
505 0 |a Principles of data science : learn the techniques and math you need to start making sense of your data -- About the Author -- About the Reviewers -- Table of Contents -- Preface -- Chapter 1: How to Sound Like a Data Scientist -- Chapter 2: Types of Data -- Chapter 3: The Five Steps of Data Science -- Chapter 4: Basic Mathematics -- Chapter 5: Impossible or Improbable -- A Gentle Introduction to Probability -- Chapter 6: Advanced Probability -- Chapter 7: Basic Statistics -- Chapter 8: Advanced Statistics -- Chapter 9: Communicating Data -- Chapter 10: How to Tell If Your Toaster is Learning -- Machine Learning Essentials -- Chapter 11: Predictions Don't Grow on Trees -- or Do They? -- Chapter 12: Beyond the Essentials -- Chapter 13: Case Studies -- Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Database management. 
650 0 |a Data structures (Computer science) 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Structures de données (Informatique) 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x Databases  |x General.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a Data structures (Computer science)  |2 fast 
650 7 |a Database management  |2 fast 
776 0 8 |i Print version:  |a Ozdemir, Sinan.  |t Principles of data science.  |d Birmingham : Packt, 2016  |z 1785887912  |z 9781785887918  |w (OCoLC)949751104 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781785887918/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 1441463 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34562650 
938 |a YBP Library Services  |b YANK  |n 13313085 
994 |a 92  |b IZTAP