A computational introduction to digital image processing /
Highly Regarded, Accessible Approach to Image Processing Using Open-Source and Commercial Software A Computational Introduction to Digital Image Processing, Second Edition explores the nature and use of digital images and shows how they can be obtained, stored, and displayed. Taking a strictly eleme...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton :
Taylor & Francis Group, CRC Press,
2016.
|
Edición: | Second edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: 1. Introduction
- 1.1. Images and Pictures
- 1.2. What Is Image Processing?
- 1.3. Image Acquisition and Sampling
- 1.4. Images and Digital Images
- 1.5. Some Applications
- 1.6. Image Processing Operations
- 1.7. An Image Processing Task
- 1.8. Types of Digital Images
- 1.9. Image File Sizes
- 1.10. Image Perception
- Exercises
- 2. Images Files and File Types
- 2.1. Opening and Viewing Grayscale Images
- 2.2. RGB Images
- 2.3. Indexed Color Images
- 2.4. Numeric Types and Conversions
- 2.5. Image Files and Formats
- 2.6. Programs
- Exercises
- 3. Image Display
- 3.1. Introduction
- 3.2. The imshow Function
- 3.3. Bit Planes
- 3.4. Spatial Resolution
- 3.5. Quantization and Dithering
- 3.6. Programs
- Exercises
- 4. Point Processing
- 4.1. Introduction
- 4.2. Arithmetic Operations
- 4.3. Histograms
- 4.4. Lookup Tables
- Exercises
- 5. Neighborhood Processing
- 5.1. Introduction
- 5.2. Notation
- 5.3. Filtering in MATLAB and Octave.
- Note continued: 5.4. Filtering in Python
- 5.5. Frequencies; Low and High Pass Filters
- 5.6. Gaussian Filters
- 5.7. Edge Sharpening
- 5.8. Non-Linear Filters
- 5.9. Edge-Preserving Blurring Filters
- 5.10. Region of Interest Processing
- 5.11. Programs
- Exercises
- 6. Image Geometry
- 6.1. Interpolation of Data
- 6.2. Image Interpolation
- 6.3. General Interpolation
- 6.4. Enlargement by Spatial Filtering
- 6.5. Scaling Smaller
- 6.6. Rotation
- 6.7. Correcting Image Distortion
- Exercises
- 7. The Fourier Transform
- 7.1. Introduction
- 7.2. Background
- 7.3. The One-Dimensional Discrete Fourier Transform
- 7.4. Properties of the One-Dimensional DFT
- 7.5. The Two-Dimensional DFT
- 7.6. Experimenting with Fourier Transforms
- 7.7. Fourier Transforms of Synthetic Images
- 7.8. Filtering in the Frequency Domain
- 7.9. Homomorphic Filtering
- 7.10. Programs
- Exercises
- 8. Image Restoration
- 8.1. Introduction
- 8.2. Noise
- 8.3. Cleaning Salt and Pepper Noise.
- Note continued: 8.4. Cleaning Gaussian Noise
- 8.5. Removal of Periodic Noise
- 8.6. Inverse
- 8.7. Wiener Filtering
- Exercises
- 9. Image Segmentation
- 9.1. Introduction
- 9.2. Thresholding
- 9.3. Applications of Thresholding
- 9.4. Choosing an Appropriate Threshold Value
- 9.5. Adaptive Thresholding
- 9.6. Edge Detection
- 9.7. Derivatives and Edges
- 9.8. Second Derivatives
- 9.9. The Canny Edge Detector
- 9.10. Corner Detection
- 9.11. The Hough and Radon Transforms
- Exercises
- 10. Mathematical Morphology
- 10.1. Introduction
- 10.2. Basic Ideas
- 10.3. Dilation and Erosion
- 10.4. Opening and Closing
- 10.5. The Hit-or-Miss Transform
- 10.6. Some Morphological Algorithms
- 10.7.A Note on the bwmorph Function in MATLAB and Octave
- 10.8. Grayscale Morphology
- 10.9. Applications of Grayscale Morphology
- 10.10. Programs
- Exercises
- 11. Image Topology
- 11.1. Introduction
- 11.2. Neighbors and Adjacency
- 11.3. Paths and Components.
- Note continued: 11.4. Equivalence Relations
- 11.5.Component Labeling
- 11.6. Lookup Tables
- 11.7. Distances and Metrics
- 11.8. Skeletonization
- 11.9. Programs
- Exercises
- 12. Shapes and Boundaries
- 12.1. Introduction
- 12.2. Chain Codes and Shape Numbers
- 12.3. Fourier Descriptors
- Exercises
- 13. Color Processing
- 13.1. What Is Color?
- 13.2. Color Models
- 13.3. Manipulating Color Images
- 13.4. Pseudocoloring
- 13.5. Processing of Color Images
- 13.6. Programs
- Exercises
- 14. Image Coding and Compression
- 14.1. Lossless and Lossy Compression
- 14.2. Huffman Coding
- 14.3. Run Length Encoding
- 14.4. Dictionary Coding: LZW Compression
- 14.5. The JPEG Algorithm
- 14.6. Programs
- Exercises
- 15. Wavelets
- 15.1. Waves and Wavelets
- 15.2.A Simple Wavelet: The Haar Wavelet
- 15.3. Wavelets and Images
- 15.4. The Daubechies Wavelets
- 15.5. Image Compression Using Wavelets
- 15.6. High Pass Filtering Using Wavelets
- 15.7. Denoising Using Wavelets.
- Note continued: Exercises
- 16. Special Effects
- 16.1. Polar Coordinates
- 16.2. Ripple Effects
- 16.3. General Distortion Effects
- 16.4. Pixel Effects
- 16.5. Color Images
- Exercises
- A. Introduction to MATLAB and Octave
- A.1. Introduction
- A.2. Basic Use
- A.3. Variables and the Workspace
- A.4. Dealing with Matrices
- A.5. Plots
- A.6. Online Help
- A.7. Programming
- Exercises
- B. Introduction to Python
- B.1. Basic Use
- B.2. Arrays
- B.3. Graphics and Plots
- B.4. Programming
- C. The Fast Fourier Transform.