Cargando…

Predictive maintenance meets predictive analytics : gathering and analyzing IoT data for manufacturing /

"In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry. Predictive maintenance, a technique to predict when an in-service machine will...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Dean, Danielle (Orador)
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2016.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ii 4500
001 OR_ocn957677194
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 160902s2016 xx 051 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCO  |d OCLCF  |d OCLCO  |d TOH  |d UAB  |d OCLCO 
035 |a (OCoLC)957677194 
037 |a CL0500000774  |b Safari Books Online 
050 4 |a HD30.213 
049 |a UAMI 
100 1 |a Dean, Danielle,  |e speaker. 
245 1 0 |a Predictive maintenance meets predictive analytics :  |b gathering and analyzing IoT data for manufacturing /  |c Danielle Dean. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2016. 
300 |a 1 online resource (1 streaming video file (50 min., 58 sec.)) :  |b digital, sound, color 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Danielle Dean. 
500 |a Title from title screen (viewed September 1, 2016). 
520 |a "In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry. Predictive maintenance, a technique to predict when an in-service machine will fail so that maintenance can be planned in advance, encompasses failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Danielle reviews predictive maintenance problems from the perspectives of both the traditional, reliability-centered maintenance field and IoT applications, discussing problem coverage, applicable predictive models based on data available, and what data must be collected to perform predictive maintenance tasks. You'll learn how to bridge the data-driven approach and the problem-driven approach by articulating what types of data are needed for different predictive maintenance applications."--Resource description page. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machinery  |x Maintenance and repair. 
650 0 |a Information technology  |x Management. 
650 0 |a Computer networks  |x Maintenance and repair. 
650 0 |a Internet of things. 
650 0 |a Cloud computing. 
650 6 |a Machines  |x Entretien et réparations. 
650 6 |a Technologie de l'information  |x Gestion. 
650 6 |a Réseaux d'ordinateurs  |x Entretien et réparations. 
650 6 |a Internet des objets. 
650 6 |a Infonuagique. 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Computer networks  |x Maintenance and repair.  |2 fast  |0 (OCoLC)fst00872322 
650 7 |a Information technology  |x Management.  |2 fast  |0 (OCoLC)fst00973112 
650 7 |a Internet of things.  |2 fast  |0 (OCoLC)fst01894151 
650 7 |a Machinery  |x Maintenance and repair.  |2 fast  |0 (OCoLC)fst01004983 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491972540/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP