Cargando…

R for data science cookbook : over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chiu, David (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, [2016]
Colección:Quick answers to common problems.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover
  • Copyright
  • Credits
  • About the Author
  • About the Reviewer
  • www.PacktPub.com
  • Table of Contents
  • Preface
  • Chapter 1: Functions in R
  • Introduction
  • Creating R functions
  • Matching arguments
  • Understanding environments
  • Working with lexical scoping
  • Understanding closure
  • Performing lazy evaluation
  • Creating infix operators
  • Using the replacement function
  • Handling errors in a function
  • The debugging function
  • Chapter 2: Data Extracting, Transforming, and Loading
  • Introduction
  • Downloading open data
  • Reading and writing CSV files
  • Scanning text files
  • Working with Excel files
  • Reading data from databases
  • Scraping web data
  • Accessing Facebook data
  • Working with twitteR
  • Chapter 3: Data Preprocessing and Preparation
  • Introduction
  • Renaming the data variable
  • Converting data types
  • Working with the date format
  • Adding new records
  • Filtering data
  • Dropping data
  • Merging data
  • Sorting data
  • Reshaping data
  • Detecting missing data
  • Imputing missing data
  • Chapter 4: Data Manipulation
  • Introduction
  • Enhancing a data.frame with a data.table
  • Managing data with a data.table
  • Performing fast aggregation with a data.table
  • Merging large datasets with a data.table
  • Subsetting and slicing data with dplyr
  • Sampling data with dplyr
  • Selecting columns with dplyr
  • Chaining operations in dplyr
  • Arranging rows with dplyr
  • Eliminating duplicated rows with dplyr
  • Adding new columns with dplyr
  • Summarizing data with dplyr
  • Merging data with dplyr
  • Chapter 5: Visualizing Data with ggplot2
  • Introduction
  • Creating basic plots with ggplot2
  • Changing aesthetics mapping
  • Introducing geometric objects
  • Performing transformations
  • Adjusting scales
  • Faceting
  • Adjusting themes
  • Combining plots
  • Creating maps.
  • Chapter 6: Making Interactive Reports
  • Introduction
  • Creating R Markdown reports
  • Learning the markdown syntax
  • Embedding R code chunks
  • Creating interactive graphics with ggvis
  • Understanding basic syntax and grammar
  • Controlling axes and legends
  • Using scales
  • Adding interactivity to a ggvis plot
  • Creating an R Shiny document
  • Publishing an R Shiny report
  • Chapter 7: Simulation from Probability Distributions
  • Introduction
  • Generating random samples
  • Understanding uniform distributions
  • Generating binomial random variates
  • Generating Poisson random variates
  • Sampling from a normal distribution
  • Sampling from a chi-squared distribution
  • Understanding Student's t-distribution
  • Sampling from a dataset
  • Simulating the stochastic process
  • Chapter 8: Statistical Inference in R
  • Introduction
  • Getting confidence intervals
  • Performing Z-tests
  • Performing student's T-tests
  • Conducting exact binomial tests
  • Performing Kolmogorov-Smirnov tests
  • Working with the Pearson's Chi-squared tests
  • Understanding the Wilcoxon Rank Sum and Signed Rank tests
  • Conducting one-way ANOVA
  • Performing two-way ANOVA
  • Chapter 9: Rule and Pattern Mining with R
  • Introduction
  • Transforming data into transactions
  • Displaying transactions and associations
  • Mining associations with the Apriori rule
  • Pruning redundant rules
  • Visualizing association rules
  • Mining frequent itemsets with Eclat
  • Creating transactions with temporal information
  • Mining frequent sequential patterns with cSPADE
  • Chapter 10: Time Series Mining with R
  • Introduction
  • Creating time series data
  • Plotting a time series object
  • Decomposing time series
  • Smoothing time series
  • Forecasting time series
  • Selecting an ARIMA model
  • Creating an ARIMA model
  • Forecasting with an ARIMA model.
  • Predicting stock prices with an ARIMA model
  • Chapter 11: Supervised Machine Learning
  • Introduction
  • Fitting a linear regression model with lm
  • Summarizing linear model fits
  • Using linear regression to predict unknown values
  • Measuring the performance of the regression model
  • Performing a multiple regression analysis
  • Selecting the best-fitted regression model with stepwise regression
  • Applying the Gaussian model for generalized linear regression
  • Performing a logistic regression analysis
  • Building a classification model with recursive partitioning trees
  • Visualizing a recursive partitioning tree
  • Measuring model performance with a confusion matrix
  • Measuring prediction performance using ROCR
  • Chapter 12: Unsupervised Machine Learning
  • Introduction
  • Clustering data with hierarchical clustering
  • Cutting tree into clusters
  • Clustering data with the k-means method
  • Clustering data with the density-based method
  • Extracting silhouette information from clustering
  • Comparing clustering methods
  • Recognizing digits using the density-based clustering method
  • Grouping similar text documents with k-means clustering methods
  • Performing dimension reduction with Principal Component Analysis (PCA)
  • Determining the number of principal components using a scree plot
  • Determining the number of principal components using the Kaiser method
  • Visualizing multivariate data using a biplot
  • Index.