|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
OR_ocn954474448 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
160802s2016 inua o 001 0 eng d |
010 |
|
|
|a 2015956727
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d YDXCP
|d OCLCF
|d UMI
|d STF
|d VT2
|d COO
|d CEF
|d KSU
|d DEBBG
|d MOQ
|d WYU
|d C6I
|d UAB
|d AU@
|d CZL
|d YDX
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 952153750
|a 969171683
|a 1048155266
|a 1066466418
|a 1103272493
|a 1129356545
|a 1153009655
|
020 |
|
|
|a 9781465454133
|q (electronic bk.)
|
020 |
|
|
|a 1465454136
|q (electronic bk.)
|
020 |
|
|
|z 9781465451682
|
020 |
|
|
|z 1465451684
|
020 |
|
|
|a 9781465454126
|
020 |
|
|
|a 1465454128
|
029 |
1 |
|
|a GBVCP
|b 897165330
|
029 |
1 |
|
|a AU@
|b 000066231302
|
035 |
|
|
|a (OCoLC)954474448
|z (OCoLC)952153750
|z (OCoLC)969171683
|z (OCoLC)1048155266
|z (OCoLC)1066466418
|z (OCoLC)1103272493
|z (OCoLC)1129356545
|z (OCoLC)1153009655
|
037 |
|
|
|a CL0500000819
|b Safari Books Online
|
050 |
|
4 |
|a QA303.2
|b .K445 2016
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kelley, W. Michael,
|e author.
|
245 |
1 |
0 |
|a Calculus I /
|c by W. Michael Kelley.
|
246 |
3 |
|
|a Calculus 1
|
246 |
3 |
|
|a Calculus one
|
246 |
3 |
|
|a Idiot's guides Calculus I
|
250 |
|
|
|a First American edition.
|
264 |
|
1 |
|a Indianapolis, Indiana :
|b Alpha, a member of Penguin Random House LLC,
|c 2016.
|
300 |
|
|
|a 1 online resource :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Idiot's guides
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed August 10, 2016).
|
520 |
|
|
|a "Let's face it: the thought of Calculus I can be daunting. But it needn't be. in this helpful guide, the fundamentals of Calculus I are taught in easy-to-understand terms, with lots of explanatory graphs and illustrations and over 150 practice problems that feature simple, step-by-step solutions to really explain what you need to know,"--
|c Provided by publisher.
|
505 |
0 |
|
|a Intro -- Contents iii -- Part 1: The Roots of Calculus 1 -- 1 What Is Calculus, Anyway? 3 -- What's the Purpose of Calculus? 4 -- Finding the Slopes of Curves 4 -- Calculating the Area of Bizarre Shapes 4 -- Justifying Old Formulas 5 -- Calculating Complicated x-Intercepts 5 -- Visualizing Graphs 5 -- Finding the Average Value of a Function 6 -- Calculating Optimal Values 6 -- Who's Responsible for This? 7 -- Ancient Influences 7 -- Newton vs Leibniz 9 -- I Ever Learn This? 11 -- 2 Polish Up Your Algebra Skills 13 -- Walk the Line: Linear Equations 14 -- Common Forms of Linear Equations 14 -- Calculating Slope 16 -- Interpreting Linear Graphs 18 -- You've Got the Power: Exponential Rules 21 -- Breaking Up Is Hard to Do: Factoring Polynomials 22 -- Greatest Common Factor 23 -- Special Factoring Patterns 23 -- Solving Quadratic Equations 24 -- Method One: Factoring 25 -- Method Two: Completing the Square 25 -- Method Three: The Quadratic Formula 26 -- Synthesizing the Quadratic Solution Methods 27 -- 3 Equations, Relations, and Functions 31 -- What Makes a Function Tick? 31 -- Working with Graphs of Functions 36 -- Functional Symmetry 39 -- Graphs to Know by Heart 43 -- Constructing an Inverse Function 45 -- Parametric Equations 47 -- What's a Parameter? 47 -- Converting to Rectangular Form 48 -- 4 Trigonometry: Last Stop Before Calculus 51 -- Getting Repetitive: Periodic Functions 51 -- Introducing the Trigonometric Functions 53 -- Sine (Written as y = sin x) 54 -- Cosine (Written as y = cos x) 54 -- Tangent (Written as y = tan x) 55 -- Cotangent (Written as y = cot x) 56 -- Secant (Written as y = sec x) 57 -- Cosecant (Written as y = csc x) 57 -- What's Your Sine: The Unit Circle 59 -- Incredibly Important Identities 61 -- Pythagorean Identities 62 -- Double-Angle Formulas 63 -- Solving Trigonometric Equations 64.
|
505 |
8 |
|
|a Part 2: Laying the Foundation for Calculus 67 -- 5 Take It to the Limit 69 -- What Is a Limit? 70 -- Can Something Be Nothing? 71 -- One-Sided Limits 74 -- When Does a Limit Exist? 78 -- When Does a Limit Not Exist? 79 -- 6 Evaluating Limits Numerically 85 -- The Major Methods 86 -- Substitution Method 86 -- Factoring Method 87 -- Conjugate Method 88 -- What If Nothing Works? 90 -- Limits and Infinity 90 -- Vertical Asymptotes 90 -- Horizontal Asymptotes 92 -- Special Limit Theorems 96 -- Evaluating Limits Graphically 97 -- Technology Focus: Calculating Limits 99 -- 7 Continuity 103 -- What Does Continuity Look Like? 104 -- The Mathematical Definition of Continuity 104 -- Types of Discontinuity 109 -- Jump Discontinuity 109 -- Point Discontinuity 113 -- Infinite/Essential Discontinuity 114 -- Removable vs Nonremovable Discontinuity 117 -- The Intermediate Value Theorem 118 -- 8 The Difference Quotient 121 -- When a Secant Becomes a Tangent 122 -- Honey, I Shrunk the x 123 -- Applying the Difference Quotient 127 -- The Alternate Difference Quotient 129 -- Part 3: The Derivative 131 -- 9 Laying Down the Law for Derivatives 133 -- When Does a Derivative Exist? 134 -- Discontinuity 134 -- Sharp Point in the Graph 134 -- Vertical Tangent Line 135 -- Basic Derivative Techniques 136 -- The Power Rule 136 -- The Product Rule 138 -- The Quotient Rule 139 -- The Chain Rule 140 -- Rates of Change 141 -- Trigonometric Derivatives 144 -- Tabular and Graphical Derivatives 145 -- Technology Focus: Calculating Derivatives 150 -- 10 Common Differentiation Tasks 155 -- Finding Equations of Tangent Lines 156 -- Implicit Differentiation 159 -- Differentiating an Inverse Function 161 -- Parametric Derivatives 164 -- Technology Focus: Solving Gross Equations 166 -- Using the Built-In Equation Solver 166 -- The Equation-Function Connection 170.
|
505 |
8 |
|
|a 11 Using Derivatives to Graph 173 -- Relative Extrema 174 -- Finding Critical Numbers 175 -- Classifying Extrema 176 -- The Wiggle Graph 178 -- The Extreme Value Theorem 180 -- Determining Concavity 182 -- Another Wiggle Graph 183 -- The Second Derivative Test 184 -- 12 Derivatives and Motion 187 -- The Position Equation 188 -- Velocity 190 -- Acceleration 191 -- Vertical Projectile Motion 193 -- 13 Common Derivative Applications 195 -- Newton's Method 196 -- Evaluating Limits: L'Hôpital's Rule 199 -- More Existence Theorems 200 -- The Mean Value Theorem 201 -- Rolle's Theorem 203 -- Related Rates 204 -- Optimization 208 -- Part 4: The Integral 215 -- 14 Approximating Area 217 -- Riemann Sums 218 -- Right and Left Sums 219 -- Midpoint Sums 221 -- The Trapezoidal Rule 222 -- Simpson's Rule 225 -- 15 Antiderivatives 227 -- The Power Rule for Integration 228 -- Integrating Trigonometric Functions 230 -- Separation 232 -- The Fundamental Theorem of Calculus 233 -- Part One: Areas and Integrals Are Related 233 -- Part Two: Derivatives and Integrals Are Opposites 235 -- u-Substitution 236 -- Tricky u-Substitution and Long Division 237 -- Technology Focus: Definite and Indefinite Integrals 239 -- 16 Applications of the Fundamental Theorem 245 -- Calculating Area Between Two Curves 246 -- The Mean Value Theorem for Integration 249 -- A Geometric Interpretation 249 -- The Average Value Theorem 251 -- Finding Distance Traveled 253 -- Accumulation Functions 255 -- Arc Length 256 -- Rectangular Equations 256 -- Parametric Equations 257 -- Part 5: Differential Equations and More 259 -- 17 Differential Equations 261 -- Separation of Variables 262 -- Types of Solutions 263 -- Family of Solutions 264 -- Specific Solutions 266 -- Exponential Growth and Decay 267 -- 18 Visualizing Differential Equations 275 -- Linear Approximation 276 -- Slope Fields 277.
|
505 |
8 |
|
|a Euler's Method 281 -- Technology Focus: Slope Fields 285 -- 19 Final Exam 289 -- A Solutions to "You've Got Problems" 301 -- B Glossary 317 -- Index 323.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Calculus.
|
650 |
|
6 |
|a Calcul infinitésimal.
|
650 |
|
7 |
|a calculus.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS / Calculus
|2 bisacsh
|
650 |
|
7 |
|a Calculus
|2 fast
|
776 |
0 |
8 |
|c Original
|z 1465451684
|z 9781465451682
|w (OCoLC)925397912
|
830 |
|
0 |
|a Idiot's guides.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781465454126/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302879580
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1253130
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13043363
|
994 |
|
|
|a 92
|b IZTAP
|