Cargando…

Python machine learning cookbook : 100 recipes that teach you how to perform various machine learning tasks in the real world /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Joshi, Prateek (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2016.
Colección:Quick answers to common problems.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_ocn953526387
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 160713t20162016enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d YDXCP  |d OCLCF  |d N$T  |d OCLCA  |d DEBBG  |d C6I  |d DEBSZ  |d TEFOD  |d CEF  |d ZCU  |d AGLDB  |d IGB  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCQ 
020 |a 9781786467683  |q (electronic bk.) 
020 |a 1786467682  |q (electronic bk.) 
020 |z 1786464470 
020 |z 9781786464477 
029 1 |a DEBBG  |b BV043969750 
029 1 |a DEBSZ  |b 485802783 
029 1 |a GBVCP  |b 882850474 
035 |a (OCoLC)953526387 
037 |a CL0500000761  |b Safari Books Online 
037 |a 6002013D-1763-46AB-AE62-A66447F951D7  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Joshi, Prateek,  |e author. 
245 1 0 |a Python machine learning cookbook :  |b 100 recipes that teach you how to perform various machine learning tasks in the real world /  |c Prateek Joshi. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2016. 
264 4 |c Ã2016 
300 |a 1 online resource (1 volume) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Quick answers to common problems 
588 |a Description based on online resource; title from cover (Safari, viewed July 12, 2016). 
500 |a Includes index. 
520 8 |a Annotation  |b 100 recipes that teach you how to perform various machine learning tasks in the real worldAbout This Book*Understand which algorithms to use in a given context with the help of this exciting recipe-based guide*Learn about perceptrons and see how they are used to build neural networks*Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniquesWho This Book Is ForThis book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code.What You Will Learn*Explore classification algorithms and apply them to the income bracket estimation problem*Use predictive modeling and apply it to real-world problems*Understand how to perform market segmentation using unsupervised learning*Explore data visualization techniques to interact with your data in diverse ways*Find out how to build a recommendation engine*Understand how to interact with text data and build models to analyze it*Work with speech data and recognize spoken words using Hidden Markov Models*Analyze stock market data using Conditional Random Fields*Work with image data and build systems for image recognition and biometric face recognition*Grasp how to use deep neural networks to build an optical character recognition systemIn DetailMachine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more.With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms.You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS / Programming Languages / Python  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
830 0 |a Quick answers to common problems. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781786464477/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Internet Archive  |b INAR  |n pythonmachinelea0000josh 
938 |a YBP Library Services  |b YANK  |n 13076368 
938 |a EBSCOhost  |b EBSC  |n 1285067 
994 |a 92  |b IZTAP