Cargando…

Data analytics with Hadoop : an introduction for data scientists /

Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you'll focus on particular a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bengfort, Benjamin (Autor), Kim, Jenny (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, 2016.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn952135791
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 160623s2016 caua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCO  |d N$T  |d YDXCP  |d IDEBK  |d TEFOD  |d OCLCO  |d EBLCP  |d OCLCO  |d OCLCF  |d OCLCO  |d KSU  |d XPJ  |d DEBSZ  |d DEBBG  |d VGM  |d OCLCQ  |d COO  |d HCO  |d CEF  |d INT  |d OCLCQ  |d OCLCO  |d WYU  |d UAB  |d OCLCQ  |d UKAHL  |d VT2  |d OCLCQ  |d AAA  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
019 |a 951436635  |a 951594147  |a 1066654042  |a 1103273766  |a 1153050667  |a 1240522445  |a 1330337924 
020 |a 9781491913765  |q (electronic bk.) 
020 |a 1491913762  |q (electronic bk.) 
020 |a 9781491913758  |q (electronic bk.) 
020 |a 1491913754  |q (electronic bk.) 
020 |z 9781491913703 
020 |z 1491913703 
029 1 |a AU@  |b 000066230710 
029 1 |a DEBBG  |b BV043969223 
029 1 |a DEBSZ  |b 480362041 
029 1 |a DEBSZ  |b 485797372 
029 1 |a GBVCP  |b 882849484 
029 1 |a ZWZ  |b 242546900 
035 |a (OCoLC)952135791  |z (OCoLC)951436635  |z (OCoLC)951594147  |z (OCoLC)1066654042  |z (OCoLC)1103273766  |z (OCoLC)1153050667  |z (OCoLC)1240522445  |z (OCoLC)1330337924 
037 |a CL0500000750  |b Safari Books Online 
050 4 |a QA76.9.D5 
072 7 |a COM  |x 018000  |2 bisacsh 
082 0 4 |a 004.36  |2 23 
049 |a UAMI 
100 1 |a Bengfort, Benjamin,  |e author. 
245 1 0 |a Data analytics with Hadoop :  |b an introduction for data scientists /  |c Benjamin Bengfort and Jenny Kim. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c 2016. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed June 13, 2016). 
500 |a Includes index. 
505 0 |a Copyright; Table of Contents; Preface; What to Expect from This Book; Who This Book Is For; How to Read This Book; Overview of Chapters; Programming and Code Examples; GitHub Repository; Executing Distributed Jobs; Permissions and Citation; Feedback and How to Contact Us; Safari® Books Online; How to Contact Us; Acknowledgments; Part I. Introduction to Distributed Computing; Chapter 1. The Age of the Data Product; What Is a Data Product?; Building Data Products at Scale with Hadoop; Leveraging Large Datasets; Hadoop for Data Products; The Data Science Pipeline and the Hadoop Ecosystem. 
505 8 |a Big Data WorkflowsConclusion; Chapter 2. An Operating System for Big Data; Basic Concepts; Hadoop Architecture; A Hadoop Cluster; HDFS; YARN; Working with a Distributed File System; Basic File System Operations; File Permissions in HDFS; Other HDFS Interfaces; Working with Distributed Computation; MapReduce: A Functional Programming Model; MapReduce: Implemented on a Cluster; Beyond a Map and Reduce: Job Chaining; Submitting a MapReduce Job to YARN; Conclusion; Chapter 3. A Framework for Python and Hadoop Streaming; Hadoop Streaming; Computing on CSV Data with Streaming. 
505 8 |a Executing Streaming JobsA Framework for MapReduce with Python; Counting Bigrams; Other Frameworks; Advanced MapReduce; Combiners; Partitioners; Job Chaining; Conclusion; Chapter 4. In-Memory Computing with Spark; Spark Basics; The Spark Stack; Resilient Distributed Datasets; Programming with RDDs; Interactive Spark Using PySpark; Writing Spark Applications; Visualizing Airline Delays with Spark; Conclusion; Chapter 5. Distributed Analysis and Patterns; Computing with Keys; Compound Keys; Keyspace Patterns; Pairs versus Stripes; Design Patterns; Summarization; Indexing; Filtering. 
505 8 |a Toward Last-Mile AnalyticsFitting a Model; Validating Models; Conclusion; Part II. Workflows and Tools for Big Data Science; Chapter 6. Data Mining and Warehousing; Structured Data Queries with Hive; The Hive Command-Line Interface (CLI); Hive Query Language (HQL); Data Analysis with Hive; HBase; NoSQL and Column-Oriented Databases; Real-Time Analytics with HBase; Conclusion; Chapter 7. Data Ingestion; Importing Relational Data with Sqoop; Importing from MySQL to HDFS; Importing from MySQL to Hive; Importing from MySQL to HBase; Ingesting Streaming Data with Flume; Flume Data Flows. 
505 8 |a Ingesting Product Impression Data with FlumeConclusion; Chapter 8. Analytics with Higher-Level APIs; Pig; Pig Latin; Data Types; Relational Operators; User-Defined Functions; Wrapping Up; Spark's Higher-Level APIs; Spark SQL; DataFrames; Conclusion; Chapter 9. Machine Learning; Scalable Machine Learning with Spark; Collaborative Filtering; Classification; Clustering; Conclusion; Chapter 10. Summary: Doing Distributed Data Science; Data Product Lifecycle; Data Lakes; Data Ingestion; Computational Data Stores; Machine Learning Lifecycle; Conclusion. 
504 |a Includes bibliographical references and index. 
520 |a Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you'll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You'll also learn about the analytical processes and data systems available to build and empower data products that can handle-and actually require-huge amounts of data. Understand core concepts behind Hadoop and cluster computing Use design patterns and parallel analytical algorithms to create distributed data analysis jobs Learn about data management, mining, and warehousing in a distributed context using Apache Hive and HBase Use Sqoop and Apache Flume to ingest data from relational databases Program complex Hadoop and Spark applications with Apache Pig and Spark DataFrames Perform machine learning techniques such as classification, clustering, and collaborative filtering with Spark's MLlib.--Provided by publisher. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Apache Hadoop. 
630 0 7 |a Apache Hadoop  |2 fast 
650 0 |a Electronic data processing  |x Distributed processing. 
650 0 |a Cluster analysis  |x Data processing. 
650 6 |a Traitement réparti. 
650 6 |a Classification automatique (Statistique)  |x Informatique. 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a Cluster analysis  |x Data processing  |2 fast 
650 7 |a Electronic data processing  |x Distributed processing  |2 fast 
700 1 |a Kim, Jenny,  |e author. 
776 0 8 |i Print version:  |a Bengfort, Benjamin.  |t Data Analytics with Hadoop.  |d [Place of publication not identified] : O'Reilly Media, Incorporated 2015  |z 9781491913703  |w (OCoLC)948570730 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491913734/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30880808 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30880809 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4537258 
938 |a EBSCOhost  |b EBSC  |n 1244937 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34724874 
938 |a YBP Library Services  |b YANK  |n 13018560 
938 |a Internet Archive  |b INAR  |n dataanalyticswit0000beng 
994 |a 92  |b IZTAP