Cargando…

Big data : algorithms, analytics, and applications /

Presenting the contributions of leading experts in their respective fields, Big Data: Algorithms, Analytics, and Applications bridges the gap between the vastness of Big Data and the appropriate computational methods for scientific and social discovery. It covers fundamental issues about Big Data, i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Li, Kuan-Ching (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton [Florida] : CRC Press, Taylor & Francis Group, [2015]
Boston, Massachusetts : Credo Reference, 2016.
Edición:[Enhanced Credo edition].
Colección:Chapman & Hall/CRC big data series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Foreword / by Jack Dongarra
  • Foreword / by Dr. Yi Pan
  • Foreword / by D. Frank Hsu
  • Preface
  • Editors
  • Contributors
  • Section I. Big data management: Chapter 1. Scalable indexing for big data processing; Chapter 2. Scalability and cost evaluation of incremental data processing using Amazon's Hadoop Service; Chapter 3. Singular value decomposition, clustering, and indexing for similarity search for large data sets in high-dimensional spaces; Chapter 4. Multiple sequence alignment and clustering with dot matrices, entropy, and genetic algorithms
  • Section II. Big data processing: Chapter 5. Approaches for high-performance big data processing: applications and challenges; Chapter 6. The art of scheduling for big data science; Chapter 7. Time-space scheduling in the MapReduce framework; Chapter 8. GEMS: graph database engine for multithreaded systems. Chapter 9. KSC-net: community detection for big data networks. Chapter 10. Making big data transparent to the software developers' community
  • Section III. Big data stream techniques and algorithms: Chapter 11. Key technologies for big data stream computing; Chapter 12. Streaming algorithms for big data processing on multicore architecture; Chapter 13. Organic streams: a unified framework for personal big data integration and organization towards social sharing and individualized sustainable use; Chapter 14. Managing big trajectory data: online processing of positional streams.
  • Section IV. Big data privacy: Chapter 15. Personal data protection aspects of big data; Chapter 16. Privacy-preserving big data management: the case of OLAP
  • Section V. Big data applications: Chapter 17. Big data in finance; Chapter 18. Semantic-based heterogeneous multimedia big data retrieval; Chapter 19. Topic modeling for large-scale multimedia analysis and retrieval; Chapter 20. Big data biometrics processing: a case study of an iris matching algorithm on Intel Xeon Phi; Chapter 21. Storing, managing, and analyzing big satellite data: experiences and lessons learned from a real-world application; Chapter 22. Barriers to the adoption of big data applications in the social sector.