Cargando…

Big data : algorithms, analytics, and applications /

Presenting the contributions of leading experts in their respective fields, Big Data: Algorithms, Analytics, and Applications bridges the gap between the vastness of Big Data and the appropriate computational methods for scientific and social discovery. It covers fundamental issues about Big Data, i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Li, Kuan-Ching (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton [Florida] : CRC Press, Taylor & Francis Group, [2015]
Boston, Massachusetts : Credo Reference, 2016.
Edición:[Enhanced Credo edition].
Colección:Chapman & Hall/CRC big data series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_ocn950733147
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 160523r20162015flua ob 000 0 eng d
040 |a CREDO  |b eng  |e rda  |e pn  |c CREDO  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781785398230  |q (electronic version) 
020 |a 1785398237 
020 |z 9781482240559  |q (hardback) 
035 |a (OCoLC)950733147 
050 4 |a QA76.9.D343  |b B545 2015eb 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
245 0 0 |a Big data :  |b algorithms, analytics, and applications /  |c edited by Kuan-Ching Li [and 3 others]. 
250 |a [Enhanced Credo edition]. 
264 1 |a Boca Raton [Florida] :  |b CRC Press, Taylor & Francis Group,  |c [2015] 
264 3 1 |a Boston, Massachusetts :  |b Credo Reference,  |c 2016. 
300 |a 1 online resource (35 entries) :  |b 153 images. 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC big data series 
504 |a Includes bibliographical references. 
505 0 |a Foreword / by Jack Dongarra -- Foreword / by Dr. Yi Pan -- Foreword / by D. Frank Hsu -- Preface -- Editors -- Contributors -- Section I. Big data management: Chapter 1. Scalable indexing for big data processing; Chapter 2. Scalability and cost evaluation of incremental data processing using Amazon's Hadoop Service; Chapter 3. Singular value decomposition, clustering, and indexing for similarity search for large data sets in high-dimensional spaces; Chapter 4. Multiple sequence alignment and clustering with dot matrices, entropy, and genetic algorithms -- Section II. Big data processing: Chapter 5. Approaches for high-performance big data processing: applications and challenges; Chapter 6. The art of scheduling for big data science; Chapter 7. Time-space scheduling in the MapReduce framework; Chapter 8. GEMS: graph database engine for multithreaded systems. Chapter 9. KSC-net: community detection for big data networks. Chapter 10. Making big data transparent to the software developers' community -- Section III. Big data stream techniques and algorithms: Chapter 11. Key technologies for big data stream computing; Chapter 12. Streaming algorithms for big data processing on multicore architecture; Chapter 13. Organic streams: a unified framework for personal big data integration and organization towards social sharing and individualized sustainable use; Chapter 14. Managing big trajectory data: online processing of positional streams. 
505 8 |a Section IV. Big data privacy: Chapter 15. Personal data protection aspects of big data; Chapter 16. Privacy-preserving big data management: the case of OLAP -- Section V. Big data applications: Chapter 17. Big data in finance; Chapter 18. Semantic-based heterogeneous multimedia big data retrieval; Chapter 19. Topic modeling for large-scale multimedia analysis and retrieval; Chapter 20. Big data biometrics processing: a case study of an iris matching algorithm on Intel Xeon Phi; Chapter 21. Storing, managing, and analyzing big satellite data: experiences and lessons learned from a real-world application; Chapter 22. Barriers to the adoption of big data applications in the social sector. 
520 3 |a Presenting the contributions of leading experts in their respective fields, Big Data: Algorithms, Analytics, and Applications bridges the gap between the vastness of Big Data and the appropriate computational methods for scientific and social discovery. It covers fundamental issues about Big Data, including efficient algorithmic methods to process data, better analytical strategies to digest data, and representative applications in diverse fields, such as medicine, science, and engineering. 
588 0 |a Title page of print version. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Big data. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Machine theory. 
650 2 |a Data Mining 
650 6 |a Données volumineuses. 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Théorie des automates. 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Database management.  |2 fast  |0 (OCoLC)fst00888037 
650 7 |a Machine theory.  |2 fast  |0 (OCoLC)fst01004846 
700 1 |a Li, Kuan-Ching,  |e editor. 
776 0 8 |i Print version:  |h xxxvi, 462 pages : illustrations  |z 9781482240559  |z 1482240556  |w (DLC) 2014043108 
830 0 |a Chapman & Hall/CRC big data series. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781482240559/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Credo Reference  |b CRED  |n 9781785398230 
994 |a 92  |b IZTAP