Cargando…

Learning probabilistic graphical models in R : familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R /

Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R About This Book Predict and use a probabilistic graphical models (PGM) as an expert system Comprehend how your computer can learn Bayesian modeling to solve real-world problems Kn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bellot, David (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2016.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn949715061
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 160512s2016 enka ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d N$T  |d DEBBG  |d N$T  |d UND  |d DEBSZ  |d CEF  |d NLE  |d UKMGB  |d ZCU  |d AGLDB  |d IGB  |d UKAHL  |d MM9  |d DST  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB706781  |2 bnb 
016 7 |a 018007284  |2 Uk 
019 |a 1173755823 
020 |a 9781784397418  |q (electronic bk.) 
020 |a 1784397415  |q (electronic bk.) 
020 |a 1784392057 
020 |a 9781784392055 
020 |z 9781784392055 
029 1 |a AU@  |b 000064820889 
029 1 |a DEBBG  |b BV043969412 
029 1 |a DEBSZ  |b 485799383 
029 1 |a GBVCP  |b 882849913 
029 1 |a UKMGB  |b 018007284 
035 |a (OCoLC)949715061  |z (OCoLC)1173755823 
037 |a CL0500000741  |b Safari Books Online 
050 4 |a QA276.45.R3 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.502855133 
049 |a UAMI 
100 1 |a Bellot, David,  |e author. 
245 1 0 |a Learning probabilistic graphical models in R :  |b familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R /  |c David Bellot. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2016. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from cover (viewed May 11, 2016). 
500 |a Includes index. 
504 |a Includes bibliographical references and index. 
520 |a Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R About This Book Predict and use a probabilistic graphical models (PGM) as an expert system Comprehend how your computer can learn Bayesian modeling to solve real-world problems Know how to prepare data and feed the models by using the appropriate algorithms from the appropriate R package Who This Book Is For This book is for anyone who has to deal with lots of data and draw conclusions from it, especially when the data is noisy or uncertain. Data scientists, machine learning enthusiasts, engineers, and those who curious about the latest advances in machine learning will find PGM interesting. What You Will Learn Understand the concepts of PGM and which type of PGM to use for which problem Tune the model's parameters and explore new models automatically Understand the basic principles of Bayesian models, from simple to advanced Transform the old linear regression model into a powerful probabilistic model Use standard industry models but with the power of PGM Understand the advanced models used throughout today's industry See how to compute posterior distribution with exact and approximate inference algorithms In Detail Probabilistic graphical models (PGM, also known as graphical models) are a marriage between probability theory and graph theory. Generally, PGMs use a graph-based representation. Two branches of graphical representations of distributions are commonly used, namely Bayesian networks and Markov networks. R has many packages to implement graphical models. We'll start by showing you how to transform a classical statistical model into a modern PGM and then look at how to do exact inference in graphical models. Proceeding, we'll introduce you to many modern R packages that will help you to perform inference on the models. We will then run a Bayesian linear regression and you'll see the advantage of going probabilistic when you want to do prediction. Next, you'll master using R packages and implementing its techniques. Finally, you'll be presented with machine learning applications that have a direct impact in many fields. Here, we'll cover clustering and the discovery of hidden information in big data, as well as two important methods, PCA and ICA, to reduce the size of big problems. Style and approach This book gives you a detailed and step-by-step explanation of each mathematical concept, which will help you build an ... 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R (Computer program language) 
650 0 |a Probabilistic databases. 
650 6 |a R (Langage de programmation) 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Probabilistic databases  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
776 0 |c Paperback  |z 9781784392055 
830 0 |a Community experience distilled. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781784392055/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30687671 
938 |a EBSCOhost  |b EBSC  |n 1230623 
994 |a 92  |b IZTAP