Cargando…

LTE small cell optimization : 3GPP evolution to release 13 /

"This book addresses R & D and standardization activities on LTE small cells and network optimization, focusing on 3GPP evolution to Release 13. In addition, the book is written by experts from Renesas, T-Mobile, Teliasonera and Videotron. The book covers: 1) LTE small cells from specificat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Reunanen, Jussi (Editor ), Toskala, Antti (Editor ), Holma, Harri, 1970- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, United Kingdom : John Wiley & Sons Ltd, 2016.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Preface xiii
  • Acknowledgements xv
  • List of Abbreviations xvii
  • 1 Introduction 1 /Harri Holma
  • 1.1 Introduction 1
  • 1.2 LTE Global Deployments and Devices 2
  • 1.3 Mobile Data Traffic Growth 3
  • 1.4 LTE Technology Evolution 4
  • 1.5 LTE Spectrum 5
  • 1.6 Small Cell Deployments 6
  • 1.7 Network Optimization 7
  • 1.8 LTE Evolution Beyond Release 13 8
  • 1.9 Summary 9
  • References 9
  • 2 LTE and LTE Advanced in Releases 8-11 11 /Antti Toskala
  • 2.1 Introduction 11
  • 2.2 Releases 8 and 9 LTE 11
  • 2.2.1 Releases 8 and 9 Physical Layer 12
  • 2.2.2 LTE Architecture 17
  • 2.2.3 LTE Radio Protocols 17
  • 2.3 LTE Advanced in Releases 10 and 11 19
  • 2.3.1 Carrier Aggregation 19
  • 2.3.2 Multiple Input Multiple Output Enhancements 23
  • 2.3.3 HetNet Enhanced Inter-cell Interference Coordination 23
  • 2.3.4 Coordinated Multipoint Transmission 25
  • 2.4 UE Capability in Releases 8-11 26
  • 2.5 Conclusions 28
  • References 28
  • 3 LTE-Advanced Evolution in Releases 12-13 29 /Antti Toskala
  • 3.1 Introduction 29
  • 3.2 Machine-Type Communications 29
  • 3.3 Enhanced CoMP 34
  • 3.4 FDD-TDD Carrier Aggregation 35
  • 3.5 WLAN-Radio Interworking 37
  • 3.6 Device-to-Device Communication with LTE 39
  • 3.7 Single Cell Point to Multipoint Transmission 41
  • 3.8 Release 12 UE Capabilities 42
  • 3.9 Conclusions 42
  • References 43
  • 4 Small Cell Enhancements in Release 12/13 45 /Antti Toskala, Timo Lunttila, Tero Henttonen and Jari Lindholm
  • 4.1 Introduction 45
  • 4.2 Small Cell and Dual Connectivity Principles 45
  • 4.3 Dual Connectivity Architecture Principle 46
  • 4.4 Dual Connectivity Protocol Impacts 47
  • 4.5 Dual Connectivity Physical Layer Impacts and Radio Link Monitoring 49
  • 4.6 Other Small Cell Physical Layer Enhancement 53
  • 4.6.1 256QAM for LTE Downlink 53
  • 4.6.2 Small Cell ON/OFF Switching and Enhanced Discovery 53
  • 4.6.3 Power Saving with Small Cell ON/OFF 56
  • 4.6.4 Over the Air Synchronization Between eNodeBs 56
  • 4.7 Release 13 Enhancements 56.
  • 4.8 Conclusions 57
  • References 57
  • 5 Small Cell Deployment Options 59 /Harri Holma and Benny Vejlgaard
  • 5.1 Introduction 59
  • 5.2 Small Cell Motivation 60
  • 5.3 Network Architecture Options 60
  • 5.4 Frequency Usage 64
  • 5.5 Selection of Small Cell Location 65
  • 5.6 Indoor Small Cells 67
  • 5.6.1 Distributed Antenna Systems 67
  • 5.6.2 Wi-Fi and Femto Cells 68
  • 5.6.3 Femto Cell Architecture 70
  • 5.6.4 Recommendations 72
  • 5.7 Cost Aspects 72
  • 5.7.1 Macro Network Extension 73
  • 5.7.2 Outdoor Small Cells 73
  • 5.7.3 Outdoor Pico Cluster 73
  • 5.7.4 Indoor Offloading 74
  • 5.8 Summary 74
  • References 75
  • 6 Small Cell Products 77 /Harri Holma and Mikko Simanainen
  • 6.1 Introduction 77
  • 6.2 3GPP Base Station Categories 78
  • 6.3 Micro Base Stations 78
  • 6.4 Pico Base Stations 80
  • 6.5 Femtocells 83
  • 6.6 Low-Power Remote Radio Heads 84
  • 6.6.1 Alternative Remote Radio Head Designs for Indoor Use 86
  • 6.7 Distributed Antenna Systems 87
  • 6.8 Wi-Fi Integration 87
  • 6.9 Wireless Backhaul Products 89
  • 6.10 Summary 90
  • Reference 90
  • 7 Small Cell Interference Management 91 /Rajeev Agrawal, Anand Bedekar, Harri Holma, Suresh Kalyanasundaram, Klaus Pedersen and Beatriz Soret
  • 7.1 Introduction 91
  • 7.2 Packet Scheduling Solutions 93
  • 7.3 Enhanced Inter-cell Interference Coordination 97
  • 7.3.1 Concept Description 97
  • 7.3.2 Performance and Algorithms 101
  • 7.4 Enhanced Coordinated Multipoint (eCoMP) 110
  • 7.5 Coordinated Multipoint (CoMP) 114
  • 7.6 Summary 119
  • References 120
  • 8 Small Cell Optimization 121 /Harri Holma, Klaus Pedersen, Claudio Rosa, Anand Bedekar and Hua Wang
  • 8.1 Introduction 121
  • 8.2 HetNet Mobility Optimization 122
  • 8.3 Inter-site Carrier Aggregation with Dual Connectivity 126
  • 8.3.1 User Data Rates with Inter-site Carrier Aggregation 126
  • 8.3.2 Mobility with Dual Connectivity 131
  • 8.4 Ultra Dense Network Interference Management 135
  • 8.4.1 Ultra Dense Network Characteristics 135
  • 8.4.2 Proactive Time-Domain Inter-cell Interference Coordination 136.
  • 8.4.3 Reactive Carrier-Based Inter-cell Interference Coordination 138
  • 8.5 Power Saving with Small Cell On/Off 139
  • 8.6 Multivendor Macro Cell and Small Cells 141
  • 8.7 Summary 143
  • References 143
  • 9 Learnings from Small Cell Deployments 145 /Brian Olsen and Harri Holma
  • 9.1 Introduction 145
  • 9.2 Small Cell Motivations by Mobile Operators 145
  • 9.3 Small Cell Challenges and Solutions 146
  • 9.4 Summary of Learnings from Small Cell Deployments 147
  • 9.5 Installation Considerations 151
  • 9.6 Example Small Cell Case Study 152
  • 9.6.1 Site Solution and Backhaul 152
  • 9.6.2 Coverage and User Data Rates 153
  • 9.6.3 Macro Cell Offloading and Capacity 154
  • 9.6.4 KPIs in Network Statistics 155
  • 9.6.5 Mobility Performance 156
  • 9.6.6 Parameter and RF Optimization 157
  • 9.7 Summary 158
  • 10 LTE Unlicensed 159 /Antti Toskala and Harri Holma
  • 10.1 Introduction 159
  • 10.2 Unlicensed Spectrum 160
  • 10.3 Operation Environment 161
  • 10.4 Motivation for the Use of Unlicensed Spectrum with LTE 162
  • 10.5 Key Requirements for 5 GHz Band Coexistence 162
  • 10.6 LTE Principle on Unlicensed Band 164
  • 10.7 LTE Performance on the Unlicensed Band 165
  • 10.8 Coexistence Performance 166
  • 10.9 Coverage with LTE in 5 GHz Band 170
  • 10.10 Standardization 172
  • 10.11 Conclusions 172
  • References 173
  • 11 LTE Macro Cell Evolution 175 /Mihai Enescu, Amitava Ghosh, Bishwarup Mondal and Antti Toskala
  • 11.1 Introduction 175
  • 11.2 Network-Assisted Interference Cancellation 176
  • 11.3 Evolution of Antenna Array Technology 181
  • 11.4 Deployment Scenarios for Antenna Arrays 182
  • 11.5 Massive-MIMO Supported by LTE 187
  • 11.5.1 Sectorization (Vertical)-Based Approaches 187
  • 11.5.2 Reciprocity-Based Approaches 188
  • 11.6 Further LTE Multi-antenna Standardization 189
  • 11.7 Release 13 Advanced Receiver Enhancements 192
  • 11.8 Conclusions 192
  • References 193
  • 12 LTE Key Performance Indicator Optimization 195 /Jussi Reunanen, Jari Salo and Riku Luostari.
  • 12.1 Introduction 195
  • 12.2 Key Performance Indicators 196
  • 12.3 Physical Layer Optimization 197
  • 12.4 Call Setup 200
  • 12.4.1 Random Access Setup 202
  • 12.4.2 RRC Connection Setup 208
  • 12.4.3 E-RAB Setup 215
  • 12.5 E-RAB Drop 218
  • 12.5.1 Handover Performance 218
  • 12.5.2 UE-Triggered RRC Connection Re-establishments 222
  • 12.5.3 eNodeB-triggered RRC Connection Re-establishments 226
  • 12.6 Handover and Mobility Optimization 228
  • 12.7 Throughput Optimization 232
  • 12.7.1 MIMO Multi-stream Usage Optimization 234
  • 12.8 High-Speed Train Optimization 243
  • 12.9 Network Density Benchmarking 246
  • 12.10 Summary 247
  • References 248
  • 13 Capacity Optimization 249 /Jussi Reunanen, Riku Luostari and Harri Holma
  • 13.1 Introduction 249
  • 13.2 Traffic Profiles in Mass Events 251
  • 13.3 Uplink Interference Management 255
  • 13.3.1 PUSCH 257
  • 13.3.2 PUCCH 265
  • 13.3.3 RACH and RRC Setup Success Rate 265
  • 13.3.4 Centralized RAN 269
  • 13.4 Downlink Interference Management 270
  • 13.4.1 PDSCH 271
  • 13.4.2 Physical Downlink Control Channel 276
  • 13.5 Signalling Load and Number of Connected Users Dimensioning 279
  • 13.5.1 Signalling Load 280
  • 13.5.2 RRC-Connected Users 280
  • 13.6 Load Balancing 284
  • 13.7 Capacity Bottleneck Analysis 286
  • 13.8 Summary 291
  • References 292
  • 14 VoLTE Optimization 293 /Riku Luostari, Jari Salo, Jussi Reunanen and Harri Holma
  • 14.1 Introduction 293
  • 14.2 Voice Options for LTE Smartphones 293
  • 14.3 Circuit Switched Fallback 294
  • 14.3.1 Basic Concepts 294
  • 14.3.2 CSFB Call Setup Time, Transition to Target RAT 296
  • 14.3.3 CSFB Call Setup Success Rate 302
  • 14.3.4 Return to LTE after CSFB Call 302
  • 14.4 Voice over LTE 307
  • 14.4.1 Setup Success Rate and Drop Rate 307
  • 14.4.2 TTI Bundling and RLC Segmentation 310
  • 14.4.3 Semi-persistent Scheduling 312
  • 14.4.4 Packet Bundling 314
  • 14.4.5 Re-establishment with Radio Preparations 315
  • 14.4.6 Voice Quality on VoLTE 315
  • 14.5 Single Radio Voice Call Continuity 322.
  • 14.5.1 Signalling Flows 322
  • 14.5.2 Performance 326
  • 14.6 Summary 331
  • References 331
  • 15 Inter-layer Mobility Optimization 333 /Jari Salo and Jussi Reunanen
  • 15.1 Introduction 333
  • 15.2 Inter-layer Idle Mode Mobility and Measurements 334
  • 15.2.1 Initial Cell Selection and Minimum Criteria for UE to Camp on a Cell 334
  • 15.2.2 Summary of Cell Reselection Rules 336
  • 15.2.3 Idle Mode Measurements 338
  • 15.3 Inter-layer Connected Mode Measurements 344
  • 15.4 Inter-layer Mobility for Coverage-Limited Network 350
  • 15.4.1 Basic Concepts 350
  • 15.4.2 Mapping Throughput Target to SINR, RSRQ and RSRP 353
  • 15.4.3 Inter-layer Mobility Example #1 (Non-equal Priority Non-equal Bandwidth LTE Layers) 361
  • 15.4.4 Inter-layer Mobility Example #2 (Equal Priority Equal Bandwidth LTE Layers) 368
  • 15.5 Inter-layer Mobility for Capacity-Limited Networks 370
  • 15.5.1 Static Load Balancing via Mobility Thresholds 371
  • 15.5.2 Dynamic Load Balancing via eNodeB Algorithms 375
  • 15.6 Summary 377
  • References 377
  • 16 Smartphone Optimization 379 /Rafael Sanchez-Mejias, Laurent No#x8A; el and Harri Holma
  • 16.1 Introduction 379
  • 16.2 Smartphone Traffic Analysis in LTE Networks 380
  • 16.2.1 Data Volumes and Asymmetry 380
  • 16.2.2 Traffic-Related Signalling 381
  • 16.2.3 Mobility-Related Signalling 382
  • 16.2.4 User Connectivity 382
  • 16.3 Smartphone Power Consumption Optimization 384
  • 16.3.1 Impact of Downlink Carrier Aggregation 384
  • 16.3.2 Impact of Discontinuous Reception 385
  • 16.4 Smartphone Operating Systems 391
  • 16.5 Messaging Applications 391
  • 16.6 Streaming Applications 393
  • 16.7 Voice over LTE 394
  • 16.7.1 VoLTE System Architecture 395
  • 16.7.2 VoLTE Performance Analysis 396
  • 16.7.3 Standby Performance 404
  • 16.7.4 Impact of Network Loading and Radio Quality 405
  • 16.8 Smartphone Battery, Baseband and RF Design Aspects 406
  • 16.8.1 Trends in Battery Capacity 406
  • 16.8.2 Trends in Cellular Chipset Power Consumption 409
  • 16.8.3 Impact of Small Cells on Smartphone Power Consumption 412.
  • 16.9 Summary 421
  • References 421
  • 17 Further Outlook for LTE Evolution and 5G 423 /Antti Toskala and Karri Ranta-aho
  • 17.1 Introduction 423
  • 17.2 Further LTE-Advanced Beyond Release 13 423
  • 17.3 Towards 5G 426
  • 17.4 5G Spectrum 427
  • 17.5 Key 5G Radio Technologies 428
  • 17.6 Expected 5G Schedule 430
  • 17.7 Conclusions 432
  • References 432
  • Index 433.