CRM für Online-Shops : make big data small : Erfolgreiches Customer Relationship Management im E-Commerce /
Kundengruppen und -bedürfnisse durch gezielte Analyse der Kundendaten identifizieren Customer Lifetime Value, Qualität, Rentabilität und Aktivität Ihrer Kunden effizient analysieren und bewerten Konkrete Maßnahmen und Kampagnen zur Kunden-Wertsteigerung ableiten: Kunden (re- )aktivieren und akti...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Alemán |
Publicado: |
[Germany] :
MITP,
2016.
|
Edición: | 1. Auflage. |
Colección: | Mitp Professional.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover; Titel; Impressum; Inhaltsverzeichnis; Einleitung; Teil I: Einführung; Kapitel 1: Fundament des eCRM: Daten; 1.1 Big Data (Problem); 1.2 CRM-Daten; 1.2.1 Transaktionsdaten; 1.2.2 Retourenquoten; 1.2.3 Personenbezogene Kundendaten; 1.3 Web-Analytics- und weitere Daten; 1.3.1 Analytics-Daten; 1.3.2 Werbemittelkontakt- und Responsedaten; 1.3.3 Erhobene (Profilierungs- )Daten; 1.3.4 Net Promoter Score; 1.4 Grundlagen der Datenspeicherung; 1.4.1 Storage von CRM-Daten: Datenbanken; 1.4.2 Storage von Web-Analytics-Daten; 1.5 Kundenverhalten 3.0; 1.5.1 Realität Cross Device.
- 1.5.2 So kauft ein Kunde heuteKapitel 2: Daten erheben; 2.1 Knowing is better than calculating; 2.2 Datenerfassung über Formulare; 2.2.1 Was ist bei Formularen zu beachten?; 2.2.2 Das Konzept der mehrstufigen Datenerhebung; 2.2.3 Daten richtig speichern; 2.3 K.o.-Kriterium Validität
- Vorsicht bei Incentives; 2.4 Beispiele guter Datenerhebungen; 2.5 Kurz zusammengefasst; Kapitel 3: Die E-Mail
- das wichtigste Medium; 3.1 Was macht die E-Mail so genial?; 3.2 Minimum-Anforderungen an den E-Mail-Service-Provider; 3.2.1 Funktionalitäten im E-Mail-Versand.
- 3.2.2 Grundregeln für einen erfolgreichen Pitch3.3 Datenaustausch Kunden-DB vs. ESP-System; Quick Check: How to get started!; Teil II: Daten analysieren; Kapitel 4: Kundengruppen identifizieren; 4.1 Warum sollten wir das tun?; 4.2 Vorab: Wie sehen meine idealen Kunden aus; 4.2.1 Was sieht mein Geschäftsmodell vor; 4.2.2 Wie oft und was kaufen diese Kunden bei mir ein; 4.3 Wie lassen sich Kundengruppen identifizieren; 4.4 Thesen erarbeiten; 4.4.1 Webanalyse; 4.4.2 Basis-Analysen; 4.4.3 Stichproben; 4.5 Thesen richtig formulieren; 4.6 Scoring-Modell zur Priorisierung der Thesen.
- 4.7 Analysen zur Veri-/Falsifizierung der Thesen4.7.1 KPIs pro These; 4.7.2 Analyse; 4.8 Kundenprofile erstellen; Kapitel 5: CRM-Analysen im globalen Unternehmenskontext; 5.1 Grundsatzentscheidung Marge oder Umsatz?; 5.2 Make Big Data Small; 5.2.1 Wie viele Kunden haben nur ein Mal gekauft?; 5.2.2 Wie viele Kunden bringen tatsächlich Gewinn?; 5.2.3 Wie viele Kunden haben drei Mal und mehr gekauft; 5.2.4 Neukunden vs. Bestandskunden; 5.2.5 Der richtige Analysezeitraum; 5.3 Kohortenanaylse; 5.3.1 Was ist eine Kohorte?; 5.3.2 Wie ist die Kohortenanalyse aufgebaut?
- 5.3.3 Was verrät uns die Kohortenanalyse?5.4 Sortimentsrelevante Analysen; 5.4.1 Welche Produkte bilden das Kernsortiment; 5.4.2 Welche Produkte sind gewinnbringend; Kapitel 6: Wie lässt sich Kundenqualität berechnen; 6.1 Was ist ein guter Kunde?
- Eine Grundsatzentscheidung; 6.2 Verschiedene Betrachtungsmodelle; 6.2.1 RFM-Scoring-Modell; 6.2.2 Customer Lifetime Value; 6.2.3 Margenbetrachtung; 6.2.4 Kohortenanalyse in einem weiteren Kontext; 6.3 Wann ist welches Modell sinnvoll und für welchen Zweck eignet es sich; 6.4 Kategorisierung der Kundengruppen; 6.4.1 Positiv/Negativ-Selektion.