Cargando…

Learning GeoSpatial analysis with Python : an effective guide to geographic information system and remote sensing analysis using Python 3 /

An effective guide to geographic information systems and remote sensing analysis using Python 3About This Book Construct applications for GIS development by exploiting Python This focuses on built-in Python modules and libraries compatible with the Python Packaging Index distribution systemno compil...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lawhead, Joel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Edición:Second edition.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Machine generated contents note: Geospatial analysis and our world
  • Beyond disasters
  • History of geospatial analysis
  • Geographic information systems
  • Remote sensing
  • Elevation data
  • Computer-aided drafting
  • Geospatial analysis and computer programming
  • Object-oriented programming for geospatial analysis
  • Importance of geospatial analysis
  • Geographic information system concepts
  • Thematic maps
  • Spatial databases
  • Spatial indexing
  • Metadata
  • Map projections
  • Rendering
  • Remote sensing concepts
  • Images as data
  • Remote sensing and color
  • Common vector GIS concepts
  • Data structures
  • Buffer
  • Dissolve
  • Generalize
  • Intersection
  • Merge
  • Point in polygon
  • Union
  • Join
  • Geospatial rules about polygons
  • Common raster data concepts
  • Band math
  • Change detection
  • Histogram
  • Feature extraction
  • Supervised classification
  • Unsupervised classification
  • Creating the simplest possible Python GIS
  • Getting started with Python
  • Note continued: Building SimpleGIS
  • Step by step
  • Summary
  • An overview of common data formats
  • Data structures
  • Common traits
  • Geolocation
  • Subject information
  • Spatial indexing
  • Indexing algorithms
  • Quadtree index
  • R-tree index
  • Grids
  • Overviews
  • Metadata
  • File structure
  • Vector data
  • Shapefiles
  • CAD files
  • Tag-based and markup-based formats
  • GeoJSON
  • Raster data
  • TIFF files
  • JPEG, GIF, BMP, and PNG
  • Compressed formats
  • ASCII Grids
  • World files
  • Point cloud data
  • Web services
  • Summary
  • Data access
  • GDAL
  • OGR
  • Computational geometry
  • The PROJ. 4 projection library
  • CGAL
  • JTS
  • GEOS
  • PostGIS
  • Other spatially-enabled databases
  • Oracle spatial and graph
  • ArcSDE
  • Microsoft SQL Server
  • MySQL
  • SpatiaLite
  • Routing
  • Esri Network Analyst and Spatial Analyst
  • pgRouting
  • Desktop tools (including visualization)
  • Quantum GIS
  • OpenEV
  • GRASS GIS
  • uDig
  • gySIG
  • OpenJUMP
  • Note continued: Google Earth
  • NASA World Wind
  • ArcG IS
  • Metadata management
  • GeoNetwork
  • CatMDEdit
  • Summary
  • Installing third-party Python modules
  • Installing GDAL
  • Windows
  • Linux
  • Mac OS X
  • Python networking libraries for acquiring data
  • The Python urllib module
  • FTP
  • ZIP and TAR files
  • Python markup and tag-based parsers
  • The minidom module
  • ElementTree
  • Building XML
  • Well-known text (WKT)
  • Python JSON libraries
  • The json module
  • The geojson module
  • OGR
  • PyShp
  • dbfpy
  • Shapely
  • Fiona
  • GDAL
  • NumPy
  • PIL
  • PNGCanvas
  • GeoPandas
  • PyMySQL
  • PyFPDF
  • Spectral Python
  • Summary
  • Measuring distance
  • Pythagorean theorem
  • Haversine formula
  • Vincenty's formula
  • Calculating line direction
  • Coordinate conversion
  • Reprojection
  • Editing shapefiles
  • Accessing the shapefile
  • Reading shapefile attributes
  • Reading shapefile geometry
  • Changing a shapefile
  • Adding fields
  • Merging shapefiles
  • Note continued: Merging shapefiles with dbfpy
  • Splitting shapefiles
  • Subsetting spatially
  • Performing selections
  • Point in polygon formula
  • Bounding Box Selections
  • Attribute selections
  • Creating images for visualization
  • Dot density calculations
  • Choropleth maps
  • Using spreadsheets
  • Using GPS data
  • Geocoding
  • Summary
  • Swapping image bands
  • Creating histograms
  • Performing a histogram stretch
  • Clipping images
  • Classifying images
  • Extracting features from images
  • Change detection
  • Summary
  • ASCII Grid files
  • Reading grids
  • Writing grids
  • Creating a shaded relief
  • Creating elevation contours
  • Working with LIDAR
  • Creating a grid from LIDAR
  • Using PIL to visualize LIDAR
  • Creating a triangulated irregular network
  • Summary
  • Creating a Normalized Difference Vegetative Index
  • Setting up the framework
  • Loading the data
  • Rasterizing the shapefile
  • Clipping the bands
  • Using the NDVI formula
  • Note continued: Classifying the NDVI
  • Additional functions
  • Loading the NDVI
  • Preparing the NDVI
  • Creating classes
  • Creating a flood inundation model
  • The flood fill function
  • Making a flood
  • Creating a color hillshade
  • Least cost path analysis
  • Setting up the test grid
  • The simple A* algorithm
  • Generating the test path
  • Viewing the test output
  • The real-world example
  • Loading the grid
  • Defining the helper functions
  • The real-world A* algorithm
  • Generating a real-world path
  • Routing along streets
  • Geolocating photos
  • Summary
  • Tracking vehicles
  • The NextBus agency list
  • The NextBus route list
  • NextBus vehicle locations
  • Mapping NextBus locations
  • Storm chasing
  • Reports from the field
  • Summary
  • A typical GPS report
  • Working with GPX-Reporter.py
  • Stepping through the program
  • The initial setup
  • Working with utility functions
  • Parsing the GPX
  • Getting the bounding box
  • Note continued: Downloading map and elevation images
  • Creating the hillshade
  • Creating maps
  • Measuring the elevation
  • Measuring the distance
  • Retrieving weather data
  • Summary.